• 제목/요약/키워드: Acrochaetiaceae

검색결과 3건 처리시간 0.01초

북대서양산 Aubouinella alariae (Jonsson) Woelkerling의 유성생식 (Sexual Reproduction in Audouinella alariae (Jonsson) Woelkerling (Acrochaetiaceae, Rhodophyta) from the North Atlantic Ocean)

  • 이용필
    • 한국수산과학회지
    • /
    • 제16권3호
    • /
    • pp.265-272
    • /
    • 1983
  • Carpogonia, spermatangia and carposporangia are demonstrated for North Atlantic plants of Audouinella alariae (Jonsson) Woelkerling for the first time. The plants are monoecious. Carpogonia are terminal on short branches and give rise to short trichogynes laterally. Spermatangia are usually borne in pairs on the supporting cells of carpogonia. Fertilized carpogonia give rise to 3-4 carposporangia. Morphology of sexual reproductive structures and postfertilization development provide characteristics for distinguishing A. alariae from A. rhipidandra (Rosenvinge) Dixon, which were previously synonymized.

  • PDF

일본 북해도산 홍조 Rhodochorton purpureum (Lightf.) Rosenvinge의 생식에 관한 주해 (Notes on Reproduction in Rhodochorton purpureum(Lightfoot) Rosenvinge (Rhodophyta) with Special Reference to Hokkaido Plants)

  • Lee, Yong-Pil
    • Journal of Plant Biology
    • /
    • 제28권1호
    • /
    • pp.45-55
    • /
    • 1985
  • 홍조 Rhodochorton purpureum (Lightf.) Rosenvinge의 생식에 관한 연구를 일본 북해도산 식물을 중심으로 하여 수행하였다. 이 종은 주로 사분포자낭을 형성하지만 단포자낭은 자연상태나 실험실조건에서도 형성하지 않는다. Nemuro산 식물은 포자낭이나 배우자낭을 형성하지 않고 영양생식에 의한 번식을 하고 있다. 자연상태에서 영양생식은 사상체의 일부에 가근이 형성된 후에 그 부분이 떨어져나가 새로운 개체로 된다. Akkeshi와 Oshoro산(I) 식물에서 형성된 사분포자는 사분포자를 형성하는 식물체로 발달한다. 그러나 Muroran과 Oshoro산(II) 식물에서 형성된 사분포자는 배우체로 발달하는데, 이들 배우체는 사분포자낭과 웅성 또는 자성배우자낭을 형성하므로 배우체에 형성되는 사분포자낭은 유사분열에 의해서 형성되었으리라 생각한다.

  • PDF

Mitochondrial Dynamics in Red Algae. 3. Filament Apices in Colaconemacaespitosum (Acrochaetiales) and Antithamnion cruciatum (Ceramiales)

  • Garbary, David J.;Zuchang, Pei
    • ALGAE
    • /
    • 제21권3호
    • /
    • pp.323-332
    • /
    • 2006
  • Mitochondrial distribution and abundance were assessed during the growth of apical and subapical cells in the red algae Colaconema caespitosum (J. Agardh) Jackelman, Stegenga and Bolton and Antithamnion cruciatum (C. Agardh) Nägeli after staining with 3,3’-dihexyloxacarbocyanine iodide [DiOC6(3)] and 2,4’-dimethylaminostyryl-Nethylpyridinium iodide (DASPEI). In fully elongate apical cells of C. caespitosum there were 100-120 mitochondria. During apical cell enlargement and division there is a doubling and then halving of the mitochondrial numbers. Apical cells prior to cytokinesis in young filaments are smaller than in mature filaments (ca. 50 and 100 μm long, respectively) and have fewer mitochondria (ca. 100 and 120 mitochondria per cell, respectively). In older vegetative cells mitochondria tend to aggregate at opposite ends of the cells with some mitochondria associated with the central nucleus or at points of apparent branch initiation. There is a greater density of mitochondria in apical cells of smaller versus larger plants (one mitochondrion per 6.3 μm3 and 9.8 μm3, respectively), suggesting that apical cells of younger plants may be more metabolically active. Male and female gametophytic thalli of Antithamnion cruciatum had similar numbers of mitochondria in apical cells of indeterminate axes, as did gametophytic and sporophytic thalli. There were about 40-50 mitochondria in fully elongated apical cells with about half this number in newly divided apical and subapical cells. Apical cells of determinate branches had more mitochondria (60-77) than indeterminate branches (60-70 vs. 40-50). In both species and in all cell types mitochondrial numbers were highly correlated with cell size.