• Title/Summary/Keyword: Acoustics simulation

Search Result 89, Processing Time 0.028 seconds

A Study on Improvement Effect of voice information transmission using Auralization at the hydraulic turbine dynamo room in Dam (가청화를 이용한 댐 수차 발전기실의 음성정보전달 개선효과에 관한 연구)

  • Kook, Joung-Hun;Ju, Duck-Hoon;Jung, Eun-Jung;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.263-267
    • /
    • 2007
  • Even though Waterpower Generation as pollution-free has its own merit of contribution by supply of good quality electricity, due to the noise made at the time of its operation, a normal mutual communication among the workers and technicians engaging at the hydraulic turbine dynamo room is almost impossible, and since those finishing materials had been used mainly by reflection material, it is actual situation that when working for maintenance in the hydraulic turbine dynamo room, as counterpart's voice vibrates, its working efficiency is difficult to ensure. On such view point, this Research has conducted Psycho-acoustics Experiment about voice Definition using Auralizational Technique, on the object for the hydraulic turbine dynamo room that improved its acoustic performance by computer simulation. As the result of Study, it was known that the clearness of sound with regard to voice information transmission was apparently improved in all items than before improvement. Therefore, it is considering that these results would be utilized usefully when renovation on the hydraulic turbine dynamo room in the future.

  • PDF

A Study on Measurement and Reduction of Cavity Resonance Based on the Internal Acoustic Modeling of Compressor (공조용 압축기의 Cavity Resonance의 측정 및 저감에 관한 연구)

  • Ahn, B.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-33
    • /
    • 1999
  • Pressure pulsation Inside the discharge and suction cavity of rotary and scroll compressor are often a major source of objectionable noise and vibration. The key factor of these noise and vibration is due to the cavity resonance. It is not only necessary to understanding the characteristics of pulsation in order to reduce the excitation force of gas to the cavity but also to verifying the phenomena of cavity resonance. For the purpose of these understandings, measurement and simulation of cavity resonance can lead to a better understandings how they occur and be very important to identify the ways to reduce the noise efficiently. In this paper, modeling of the cavity(internal acoustics inside the shell) is discussed and simulated using FEM. Results from the simulation are compared with those measurement in experiments. In describing of cavity mode by experiments, it is very important to specify the exact conditions under which they are measured. Finally, this paper shows the one example of reduced cavity resonance in the compressor.

  • PDF

Evaluation of Acoustic Performance about Dome-typed Gymnastics Training Floor Using Auralization (가청화를 이용한 돔형 체조연습장의 음향 성능평가에 관한 연구)

  • Yun, Jae-Hyun;Ju, Duck-Hoon;Kim, Jae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.708-719
    • /
    • 2007
  • In case of indoor gymnastics training floor, in view of its characteristics, since it is simultaneously required the related smooth communication between the coach and the player, also the acoustic performance regarding to the clearness of music, besides the sport activity, the consideration about the acoustic character has entered the stage as an indispensable element. On such viewpoint, recently constructed dome-typed gymnastic training floor was optimized acoustic design with remodeling through acoustic simulation test. And acoustic satisfaction degree and reaction was attempted to investigate about the gymnastics training floor estimating value of human's psychological(sensual) degree using auralization that enables to experience the virtual sound field at the stage of design. As the result of investigation about the research on the space of object, it could be known that the valuation regarding to the acoustic performance of 'after-improvement' was distinctly more refined than that of 'before-improvement'. It is now considering that such result of the study can be utilized as the useful data which enables to improve the retrenchment effect of the construction cost as well as the acoustic capability, by means of the prediction control on the acoustic problem from the stage of design, for the occasion when the similar indoor sport gymnasium is planning to build for the near future.

Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy (생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Architectural Acoustics Design of multipurpose Auditorium in S-high school (S고등학교(高等學校) 다목적(多目的) 강당(講堂)의 건축음향설계(建築音響設計))

  • Ju, Duck-Hoon;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.436-440
    • /
    • 2008
  • Among those various facilities attached to the school building, the Auditorium is being utilized for not only the Exercise Activity but also for many purposes such as Culture, Public Performance, Education, Assembly and so on. In order to utilize in maximum such function of the multipurpose auditorium, an adequate acoustic design with regard to the Clarity of Voice and Music in accordance with its use-purpose should be accompanied. However, as the most part of multipurpose auditoriums is designed with high ceiling-height by its peculiar character, and due to use of the material of strong reflexibility, it is appearing the defect that excessively exposes the reverberation of sound. In order to make out an optimal acoustic condition within the broad space such as an auditorium, the acoustic characteristics must be considered from the planning stage, however in the most case, those acoustic problems are being settled through the repair works after construction. On such viewpoint, this Study intends to analyze the room acoustic characteristics from the planning stage using a computer simulation based on the blueprint of multipurpose auditorium in S High School located in Gwangju. It is considered that the material analyzed in such way could be practically applied as a fundamental material enables to improve the acoustic capability when a similar broad space is planned hereafter.

  • PDF

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

Sound Source Externalization Algorithm Using Modified HRTFs and an Acoustic Simulation Method (변형된 머리전달 함수 및 음향 시뮬레이션 기법을 이용한 음상 외재화 알고리즘)

  • Lee, Yong-Ju;Jang, Dae-Young;Jang, In-Seon;Kang, Kyeong-Ok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.714-722
    • /
    • 2009
  • This paper presents a new sound source externalization algorithm for increasing spaciousness and presence on earphone or headphone environments. To do this, we used modified head related transfer functions (M-HRTFs) and room impulse responses acquired by an acoustic simulation method. M-HRTFs developed by ETRI have less tone color distortion of original sound sources than traditional HRTFs. The acoustic simulation method is used to obtain more natural reflected sound. To verify the proposed externalization algorithm, we performed a listening test. From the test, the proposed algorithm is effective in externalizing the sound sources especially when they are on the left and right sides.

A Study on the Validity of the Prediction of Binaural Parameters by 5 Channel Microphone System (5채널 마이크로폰 시스템을 활용한 공간감 지표 예측의 타당성에 관한 연구)

  • Jang Jae-Hee;Oh Yang-Ki;Jeong Dae-Up;Jeong Hyok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Providing adequate amount of spatial impression for spaciousness) has been known to be one of the most important design considerations for the good acoustics of rooms for music. and the measurement, of room acoustics using parameters. such as LEF and IACC, forms an essential part of such evaluation. However. it is unavoidable to use different transducers (figure of eight microphones. head and torso) for the measurement of each parameter and it tends to make the measurement procedure complicated. The Present work tried to provide a simpler way to measure these binaural room acoustic parameters including monaural ones with a single measurement system using both spatial information collected through a 5-channel microphone and a trained neural network. A computer simulation program, CATT-Acoustic V7.2. which allowed us to obtain exactly the same spatial information as a 5-channel microphone was used. since it requires quite a large amount of data for practical training of a neural network. Since each reflection has different energy. delay and direction, energy should be integrated properly. the concept of ray tracing method was applied inversely in this work. Also applying weightings according to the delay times was considered in this work. Finally, predicted results were compared with the measured data md their correlations were analyzed and discussed.

Tailpipe Noise Prediction of an Accelerating Vehicle (가속주행하는 차량의 배기 토출 소음 예측)

  • Kim Bong-Ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.291-294
    • /
    • 2000
  • Analysis of the contribution of each pass-by noise source to the overall pass-by noise is an important issue for reduction of pass-by noise. A technical approach for predicting tailpipe noise is used to identify the contribution of tailpipe noise to the pass-by noise in this study. Simulation program with a time domain engine modeling program called 'WAVE' and wave propagation theory of moving noise source are employed. Since the Doppler phenomenon causes a frequency shift during a pass-by noise test, the Doppler correction and time delay effects are incorporated into the estimation of tailpipe noise. The developed program can furnish an in-depth understanding of the effect of tailpipe to pass-by noise.

  • PDF

Evaluation of Speech Privacy on the Seat-design in High-speed Train Passenger Cars (KTX 의자 설계에 따른 객실 Speech Privacy 평가)

  • Jang, Hyung Suk;Kim, Jae Hyeon;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.146-153
    • /
    • 2014
  • This study investigates the effects of seat-design elements such as seating arrangement, shape, and height on speech privacy in high-speed trains. For the evaluation of speech privacy, acoustic simulation software was used to reproduce room acoustical conditions in passenger cars on the basis of in-situ measurement data. The influences of speech source directivity and source height on privacy distance ($r_P$) were investigated, and it was found that $r_P$ determined using an omni-directional source was relatively shorter than that determined using a directional source. It was also found that $r_P$ decreased when the source height was lower than the height of the seat-back because the seat-back blocked the propagation of speech from the sound source. The effect of seating arrangement was not significant when comparing the vis-a-vis seating and one-side seating arrangements. In addition, among the alternative seat-designs, the seats that block the space between the seats and cover the space near the ear were found to show significantly enhanced speech privacy in high-speed train passenger cars.