• 제목/요약/키워드: Acoustics

검색결과 642건 처리시간 0.025초

생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구 (Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy)

  • 한재현;김태민;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

셀롤로오즈 흡음재의 음향적 특성 평가 (Evaluations of the Acoustics Characteristics of Cellulose Absorbers)

  • 연준오;김경우;양관섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

셀룰로오즈 흡음재의 음향적 특성 평가 (Evaluations of the Acoustics Characteristics of Cellulose Absorbers)

  • 연준오;김경우;양관섭
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.456-462
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose absorber has been developed with waste paper through adjustment of various mix proportions. The developed cellulose absorber has been tested for its acoustic properties such as absorption coefficient and dynamic stiffness. The absorption coefficient was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorption coefficient and 4.7 $MN/m^3$ was indicated in dynamic stiffness. Also, for practical use of developed absorbers as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool absorbers and constructed drywall of gypsum board. The results have shown 55 dB(Rw) of sound reduction index in glass-wool wall and 46 dB(Rw) in cellulose.

승용차의 도로면 소음 평가를 위한 시험절차 고찰 (A Test Procedure for Road Noise Evaluation)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측 (Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow)

  • 이정권;박철민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF

유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석 (Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model)

  • 이제원;왕세명;주재만;박승일;이성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group (Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4 (Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4)

  • ;;;임종윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구 (Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor)

  • 김상현;정철웅;박재성;김해승;이효재
    • 한국소음진동공학회논문집
    • /
    • 제25권8호
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

차량 배기토출음 음질분석에 대한 연구 (A Study on Sound Quality of Exhaust Tail-pipe Noise of Vehicle)

  • 정인성;김홍기;신동호;임희곤;김상호
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.90-100
    • /
    • 2015
  • Recently, creating a signature sound for a brand has become more important in the automotive industry. It is important to remember that the people inside a vehicle are not the only one, who assess the signature sound, exhaust sound has become a more important factor. Most research has used psycho-acoustic parameter to objectively measure the aesthetic qualities of exhaust sound. However, these results do not parallel the results from subjective analysis. Therefore, this research focused on developing a method for objective quantification to assess the aesthetic qualities of exhaust sound in order to help develop a more appealing signature sound. To do so, the actual exhaust sound was synthesized and subjectively assessed at varied frequencies samples of 30 individuals employed at sejong R&D center. The results were analyzed using the science of harmony scale.