• Title/Summary/Keyword: Acoustic tweezer

Search Result 2, Processing Time 0.015 seconds

A Study on Development of Acoustic Tweezer System Using Standing Waves and Very High Frequency Focused Beams (정상파와 초고주파 집속 빔을 이용한 음향집게시스템의 개발에 관한 연구)

  • Yang, Jeong-Won;Ha, Kang-Lyeol;Kim, Moo-Joon;Lee, Jung-Woo;Shung, K.K.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.357-364
    • /
    • 2008
  • For the purpose of possibility study on development of an acoustic tweezer using standing waves and very high frequency ultrasound focused beams, a system which can manipulate the position of particles in water has been constructed. It can move the particles to near focal point of a focused beam by the radiation force of standing waves, and then the particles would be trapped by the radiating force of the focused beam. The results show that micro sphere particles were trapped well at nodes of the standing waves and their position can be easily manipulated by frequency control. And, even though the radiation force by single focused beam pushes a particle away from the transducer, two focused confronted beams can trap it at near center.

Development of portable single-beam acoustic tweezers for biomedical applications (생체응용을 위한 휴대용 단일빔 음향집게시스템 개발)

  • Lee, Junsu;Park, Yeon-Seong;Kim, Mi-Ji;Yoon, Changhan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.435-440
    • /
    • 2020
  • Single-beam acoustic tweezers that are capable of manipulating micron-size particles in a non-contact manner have been used in many biological and biomedical applications. Current single-beam acoustic tweezer systems developed for in vitro experiments consist of a function generator and a power amplifier, thus the system is bulky and expensive. This configuration would not be suitable for in vivo and clinical applications. Thus, in this paper, we present a portable single-beam acoustic tweezer system and its performances of trapping and manipulating micron-size objects. The developed system consists of an Field Programmable Gate Array (FPGA) chip and two pulsers, and parameters such as center frequency and pulse duration were controlled by a Personal Computer (PC) via a USB (Universal Serial Bus) interface in real-time. It was shown that the system was capable of generating the transmitting pulse up to 20 MHz, and producing sufficient intensity to trap microparticles and cells. The performance of the system was evaluated by trapping and manipulating 40 ㎛ and 90 ㎛ in diameter polystyrene particles.