• Title/Summary/Keyword: Acoustic transducer

Search Result 391, Processing Time 0.022 seconds

Single beam acoustic tweezers for biomedical applications (단일 빔 음향 집게를 이용한 바이오메디컬 응용 연구)

  • Hae Gyun Lim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.452-459
    • /
    • 2023
  • Acoustic tweezers represent an exceptionally versatile and adaptable collection of instruments that harness the intrinsic power of sound waves to manipulate a wide spectrum of bioparticles, ranging from minuscule extracellular vesicles at the nanoscale to more substantial multicellular organisms measuring in millimeters. This field of research has witnessed remarkable progress over the course of the past few decades, primarily in the domain of Single Beam Acoustic Tweezers (SBAT) which utilizes a single element transducer for its operation. Initially conceived as a method for particle trapping, SBAT has since evolved into an advanced platform capable of achieving precise translation of cells and organisms. Recent groundbreaking advancements have significantly enhanced the capabilities of SBAT, unlocking new functionalities such as particle/cell separation and controlled deformation of single cells. These advancements have propelled SBAT to the forefront of bioparticle/cell manipulation, gathering attention within the scientific community. This review explores the core principles of SBAT and how sound waves affect bioparticles/cells. We aim to build a strong conceptual foundation for understanding advancements in this field by detailing its principles and methodologies.

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

The Analysis of Acoustic Emission Spectra in a 36 kHz Sonoreactor (36kHz 초음파 반응기에서의 원주파수 및 파생주파수의 음압 분포 분석)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.128-134
    • /
    • 2016
  • Acoustic emission spectra was analyzed to investigate the distribution of sound pressure in a 36 kHz sonoreactor. The sound pressure of fundamental frequency (f: 36 kHz), harmonics (2f: 72 kHz, 3f: 108 kHz, 4f: 144 kHz, 5f: 180 kHz, 6f: 216 kHz), and subharmonics (1.5f: 54 kHz, 2.5f: 90 kHz, 3.5f: 126 kHz, 4.5f: 162 kHz, 5.5f: 198 kHz, 6.5f; 234 kHz) was measured at every 5 cm from the ultrasonic transducer using a hydrophone and a spectrum analyzer. It was revealed that the input power of ultrasound, the application of mechanical mixing, and the concentration of SDS affected the sound pressure distributions of the fundamental frequency and total detected frequencies frequencies significantly. Moreover a linear relationship was found between the average total sound pressure and the degree of sonochemical oxidation while there was no significant linear relationship between the average sound pressure of fundamental frequency and the degree of sonochemical oxidation.

A study on the reduction of crosstalk in a two-dimensional planar array of underwater acoustic transducers (2차원 평면배열 수중 음향 트랜스듀서 내 상호간섭 저감 방안 연구)

  • Park, Haejune;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.349-357
    • /
    • 2016
  • In this work, we proposed various structural methods to reduce the crosstalk between elements in a planar array of underwater acoustic transducers and investigated the efficacy of each method through finite element analysis. It is shown that the effects of crosstalk reduction increase as the depth of the kerf among elements and the width of the kerf increase, and the elastic stiffness of the kerf filler decreases. Results of this study are expected to be useful in designing the structure of underwater acoustic planar array transducers to maximize their performance.

Nondestructive Evaluation of Damage Modes in a Bending Piezoelectric Composite Actuator Based on Waveform and Frequency Analyses (파형 및 주파수해석에 근거한 굽힘 압전 복합재료 작동기 손상모드의 비파괴적 평가)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.870-879
    • /
    • 2007
  • In this study, various damage modes in bending unimorph piezoelectric composite actuators with a thin sandwiched PZT plate during bending fracture tests have been evaluated by monitoring acoustic emission (AE) signals in terms of waveform and peak frequency as well as AE parameters. Three kinds of actuator specimens consisting of woven fabric fiber skin layers and a PZT ceramic core layer are loaded with a roller and an AE activity from the specimen is monitored during the entire loading using an AE transducer mounted on the specimen. AE characteristics from a monolithic PZT ceramic with a thickness of $250{\mu}m$ are examined first in order to distinguish different AE signals from various possible damage modes in piezoelectric composite actuators. Post-failure observations and stress analyses in the respective layers of the specimens are conducted to identify particular features in the acoustic emission signal that correspond to specific types of damage modes. As a result, the signal classification based on waveform and peak frequency analyses successfully describes the failure process of the bending piezoelectric composite actuator exhibiting diverse failure mechanisms. Furthermore, it is elucidated that when the PZT ceramic embedded actuators are loaded mechanical bending loads, the failure process of actuator specimens with different lay-up configurations is almost same irrespective of their lay-up configurations.

Trial manufacture of dual frequency acoustic pinger to minimize cetacean bycatch (고래류 혼획을 최소화하기 위한 다주파 음향 경고시스템의 시험 제작)

  • Lee, Yoo-Won;Shin, Hyeong-Il;Kim, Seok-Jae;Seo, Du-Ok;Lee, Dae-Jae;Kim, Zang-Geun;Hwang, Doo-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.3
    • /
    • pp.207-212
    • /
    • 2005
  • Dual frequency acoustic pinger(AP) was manufactured to reduce study effect by long-term use of developed single frequency AP to prevent cetacean bycatch. Directivity characteristic of transducer was the omnidirectional pattern which showed less than ${\pm}3dB$ the change range of sensitivity on the beam pattern of right and left. Source power level(SPL) was 1384311pa with epoxy window before casing however after casing 1170B11Pa at sea. Dual frequency Af was tested to identify the avoidance behavior of bottlenose dolphin by its working. However the efficiency of dual frequency AP about the study effect was verified experiment repeatedly using single and dual frequency AP.

Development of In-Service Inspection Techniques for PGSFR (PGSFR 가동중검사기술 개발)

  • Kim, Hoe Woong;Joo, Young Sang;Lee, Young Kyu;Park, Sang Jin;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2016
  • Since the sodium-cooled fast reactor is operated in a hostile environment due to the use of liquid sodium as its coolant, advanced techniques for in-service inspection are required to periodically verify the integrity of the reactor. This paper presents the development of in-service inspection techniques for Proto-type Generation IV Sodium-cooled Fast Reactor. First, the 10 m long plate-type ultrasonic waveguide sensor has been developed for in-service inspection of reactor internals, and its feasibility was verified through several under-water and under-sodium experiments. Second, the combined inspection system for in-service inspection of ferromagnetic steam generator tubes has been developed. The remote field eddy current testing and magnetic flux leakage testing can be conducted simultaneously by using the developed inspection system, and the detectability was demonstrated through several damage detection experiments. Finally, the electro-magnetic acoustic transducer which can withstand high temperature and be installable in the remote operated vehicle has been developed for in-service inspection of the reactor vessel, and its detectability was investigated through damage detection experiments.

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

Measurement of Ultrasonic Field Propagation Characteristics in Biological Tissues Using a Two-dimensional Array Hydrophone (2차원 배열 수중청음기를 이용한 생체조직에서의 초음파 음장 전파특성 측정)

  • ;;;;Xiu-Fen Gong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.76-82
    • /
    • 2001
  • Because the biological tissue with inhomogeneous acoustic properties does not keep a particular shape, the measurement of propagation characteristics of ultrasonic fields by the conventional scanning method with a miniature hydrophone is difficult. In this study, a two-dimensional may hydrophone was fabricated using the PVDF (Polyvinylidene fluoride) piezo-electric film and a ultrasonic field measurement system with it was established. For the acoustic field produced by a circular plan transducer with center frequency of 2.25㎒ and 13㎜ in diameter, it was possible to make a fairly accurate field measurement using the hydrophone system. The attenuation coefficients at 2.25 ㎒ for biological tissues were 0.7∼1.3 dB/cm(average; 1.0 dB/cm) in bovine liver, 1.0∼1.8 dB/cm (average; 1.6 dB/cm) in pig liver, 0.9∼2,9 dB/cm(average: 2.1 dB/cm) in bovine muscles, 1.7∼3.3 dB/cm (average; 2.5 dB/cm) in pig muscles.

  • PDF

Analysis of Signal Transfer Characteristics of Implantable Middle Ear System using Acoustic Model (청각모델을 이용한 이식형 인공중이 시스템의 신호 전달 특성 해석)

  • 송병섭;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2002
  • The IME(implantable middle ear) system is Promising due to its ability to free from sound feedback and Produce a good sound quality and intelligibility with low distortion even if it is operated with high gain for severe hearing impaired. The differential electromagnetic vibration transducer. which was developed for using in IME system and has two small magnets attached the same Pole facing in the coil. is not influenced by environmental external magnetic field. Besides, it has high vibration efficiency and good frequency response characteristics. In this Paper, using acoustic model of the transducer and ear model of normal Person. the signal transfer characteristics of the IME system are analyzed and investigated From the differences of the characteristics between normal ear and the IME system, it is Possible that design of the IME system that have the signal transfer characteristics similar to normal person's ear.