• Title/Summary/Keyword: Acoustic transducer

Search Result 393, Processing Time 0.032 seconds

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I) ($({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.477-482
    • /
    • 2001
  • The velocity changes of magneto surface acoustic wave (MSAW) have been investigated in the MSAW devices composed of wedge type transducer and as-sputtered ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0)amorphous films on glass substrates. The velocity changes of devices depended sensistively on exciting frequency of MSAW, applying the DC bias magnetic field. film thickness and film composition. Particularly. it was conformed that velocity changes increased with the increase of the exciting frequency of MSAW and the thickness of magnetic films. A device deposited x= 0.8 film along the MSAW propagation direction among the devices exhibited a large velocity change of 0.062% at 8.7 MHz for the applied field of 70 Oe.

  • PDF

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer (의료용 초음파 위상배열 트랜스듀서의 열 분산 방안)

  • Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

Transducer Combination for High-Quality Ultrasound Tomography Based on Speed of Sound Imaging (속도 분포 기반 단층촬영을 위한 최적의 트랜스듀서의 조합)

  • Kim, Young Hun;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delay-and-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

Design, fabrication and performance characteristics of a 50kHz tonpilz type transducer with a half-wavelength diameter (반파장 직경을 갖는 50kHz tonpilz형 음향 변환기의 설계, 제작 및 성능특성)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In a split beam echo sounder, the transducer design needs to have minimal side lobes because the angular position and level of the side lobes establishes the usable signal level and phase angle limits for determining target strength. In order to suppress effectively the generation of unwanted side lobes in the directivity pattern of split beam transducer, the spacing and size of the transducer elements need to be controlled less than half of a wavelength. With this purpose, a 50 kHz tonpilz type transducer with a half-wavelength diameter in relation to the development of a split beam transducer was designed using the equivalent circuit model, and the underwater performance characteristics were measured and analyzed. From the in-air and in-water impedance responses, the measured value of the electro-acoustic conversion efficiency for the designed transducer was 51.6%. A maximum transmitting voltage response (TVR) value of 172.25dB re $1{\mu}Pa/V$ at 1m was achieved at 52.92kHz with a specially designed matching network and the quality factor was 10.3 with the transmitting bandwidth of 5.14kHz. A maximum receiving sensitivity (SRT) of -183.57dB re $1V/{\mu}Pa$ was measured at 51.45kHz and the receiving bandwidth at -3dB was 1.71kHz. These results suggest that the designed tonpilz type transducer can be effectively used in the development of a split beam transducer for a 50kHz fish sizing echo sounder.

Proposition of a New Implantable Acoustic Sensor Based on Technology Evaluation of Fully Implantable Hearing Aids (완전 이식형 보청기 기술 평가 기반의 새로운 이식형 음향센서 제안)

  • Cho, Jin-Ho;Woo, Seong Tak;Lim, Hyung-Gyu;Jung, Eui Sung;Lee, Jyung Hyun;Lee, Seung-Ha;Seong, Ki Woong
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.178-184
    • /
    • 2014
  • Key components of implantable hearing aids are consist of an acoustic sensor that collect external sound by suppressing the body noise, a signal processor module for compensation algorithm of hearing loss, and a output transducer which has tiny size but have high efficiency, respectively. In the partial implantable hearing aids, technologies of transducer and signal processor are so matured that can be applied not too much difficulty. However, due to the difficulties in implantable acoustic sensor technology, such as minimization of masticatory sound and damage of sensor's membrane from external impact, practical use of fully implantable hearing aids have not successful so far. In this paper, we have proposed a novel implantable acoustic sensor which has trans-tympanic structure, and is verified that the proposed method can be very useful for fully implantable hearing aids by cadaveric experiments.

A Astudy on Bandwidth Enhancement of a Ultrasonic Transducer with a Taper (Taper형 초음파 진동자의 대역폭 개선에 관한 연구)

  • 정봉규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.312-322
    • /
    • 1999
  • A ultrasonic transduce with a single acoustic matching layer has been designed as an attempt to increase the bandwidth of underwater transducer. The wideband resonance condition was accomplished by attaching a single matching layer on the front face of a ceramic resonator composed of a piezoelectric bar, a taper part and a head part. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedance and thickness of the matching layer in the water tank.The obtained results are summarized as follows:1. Measured resonant and antiresonant frequencies of the piezoelectric transducer with no matching layer in air were 24.7 kHz and 25.6 kHz, respectively. 2. Two resonant frequencies of the piezoelectric transducer with a single matching layer were 21.7 kHx and 26.9 kHz, respectively, in air and 21.4 kHz and 22.7 kHz, respectively, with a water load.3. Two distinct resonance peaks in the transmitting voltage response(TVR) of the developed transducer were observed at 22.0 kHz and 25.8 kHz, respectively, with center frequency of 24.0 kHz. The values of TVR at these frequencies were 130.1 dB re $1 \muPa$/V at 22.0 kHz and 128.5 dB re $1 \muPa$/V at 25.8 kHz, respectively.Reasonable agreement between the experimental results and the numerical values was achieved.

  • PDF

Comparison of piezoelectric flextentional sonar transducer simulations between a coupled FE-BEM and ATILA code (결합형 유한요소-경계요소 기법과 ATILA와의 압전체 유연성 쏘나 변환기 시뮬레이션 비교)

  • Soon-Suck Jarng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.559-567
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns, resonant frequencies, bandwidths, quality factors, output acoustic powers and transmitting voltage responses. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

The Effect on Acoustic Band Characteristics of ZnO Piezoelectric Transducer according to Thickness of Counter Electrode Layers (하부전극층의 두께가 ZnO 압전변환기의 음향대역특성에 미치는 영향)

  • Park, Gi-Yub;Lee, Jong-Deok;Park, Soon-Tae
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • In this paper, piezoelectric transducer was theoretically analyzed to fabricate high frequency piezoelectric transducer with broadband characteristics. Piezoelectric transducer have been fabricated with 3.825${\mu}m$ ZnO film on Pt/Sapphire(0001), and its appilicability of transducer was confirmed with analyzing theoretical and experimental frequency characteristic. The resonance frequency was detected at the frequency of 827.47MHz corresponding to the half-wavelength frequency of ZnO thin film. Insertion loss was almost -50dB. The minimum insertion loss agrees with simulation analysis.

  • PDF

Residual stress measurement using acoustic microscope (초음파현미경을 이용한 잔류 응력 측정)

  • Kim, Hyun;Ko, Dea-sik;Jun, Kye-suk
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.259-262
    • /
    • 1998
  • In this paper, we have studied measurement technique for inhomogeneous residual stress using acoustic microscopy with quadrature detector. In experiment, aluminum tensile specimen with the flaw has been made and loaded by Instrone. A spherical typed acoustic transducer of center frequency 5MHz has been used for sending a longitudinal acoustic wave into a stressed specimen. It has been shown in experimental results that the phase has largely changed around the flaw that residual stress has been largely distributed and acoustic microscopy has been used in the field of residual stress measurement.

  • PDF

Development of Linear Actuator Using Surface Acoustic Wave (표면 탄성파를 이용한 선형 구동기의 개발)

  • Kim, Jae-Geun;Lim, Soo-Cheol;Lee, Taek-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.852-855
    • /
    • 2008
  • In this paper, we proposed a new type's PZT actuator using surface acoustic wave. This actuator uses Rayleigh wave as an operational traveling wave. For the development of the actuator, each components of surface acoustic wave motor like PZT substrate, slider and IDT was studied theoretically and fabricated. For the measurement of transfer function of PZT substrate and operation of surface acoustic wave motor, network analyzer and 13.56MHz RF generator were used. Also the model which expresses the driving characteristic best was suggested and simulation was executed for the suggested model. And the future research works for improvement of SAW actuator was suggested.

  • PDF