• Title/Summary/Keyword: Acoustic response

Search Result 574, Processing Time 0.033 seconds

A Study on the Evaluation of Melon Maturity Using Acoustic Response (음파반응을 이용한 멜론의 숙도 평가에 관한 연구)

  • Choi W. K.;Choi K. H.;Lee K. J.;Choi D. S.;Kang S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.38-44
    • /
    • 2005
  • In this study, the acoustic response technique was applied to evaluate the maturity of melon nondestructively. The acoustic response signals through melon were obtained by microphone and signal conditioner with the lapse of days after fruit set. The acoustic parameters such as resonant frequencies and the spectrum energy ratio were analyzed. To investigate the relation between acoustic parameters and firmness of melon, the compression test was performed. Three resonant frequencies representing f1, f2 and f3 were 150 to 250 Hz, 300 to 400 Hz, and 450 to 550 Hz, respectively. The resonant frequencies were shifted to the lower frequencies and the magnitude of spectrum decreased as the maturity of melon increased. Some significant correlations were found between melon firmness and the spectrum energy ratio in some frequency ranges. It is possible to estimate the maturity of melon by acoustic response technique.

A Study on the Modal Characteristics of the Vibration-Acoustic Coupled System (진동-음향 연성계의 모드특성에 대한 연구)

  • Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.239-245
    • /
    • 1996
  • Modal parameters determine the frequency response characteristics of vibration system or acoustic system. When the two systems are fully coupled, however, coupling changes the vibrational and acoustic model parameters into those of the coupled system. In this case, it is very difficult to obtain the modified model parameters and response characteristics. In this paper, coupling effect is analytically investigated on the natural frequency, mode and frequency response characteristics. The result can be applied to understand and to design the frequency response characteristics of the vehicle passenger compartment.

  • PDF

A Numerical Study on Sensitivity of Acoustic Response to Pressure Oscillations in Liquid Rocket Engine (압력진동에 대한 액체 로켓엔진의 음향 응답의 민감도에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.79-87
    • /
    • 2002
  • Acoustic responses to pressure oscillations in axisymmetric combustion chamber are numerically investigated to examine the qualitative trend of acoustic instability in liquid rocket engine. Chamber operating condition and excitation frequency of oscillating pressure are selected as exciting parameters of acoustic instability. Artificial perturbation is simulated by total-pressure oscillation with sine wave at chamber inlet. Many approximations and simplifications are introduced without losing the essence of acoustic pressure response. First, steady-state solution for each operating condition is obtained and next, transient analysis is conducted. Depending on operating condition and excitation frequency, the distinct response characteristics are brought. Weak-strength flames and high-frequency excitation tend to cause sensitive acoustic pressure response leading to unstable pressure field. These results are analyzed based on the correlation with acoustic pressure responses from the previous works adopting laminar flamelet model.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

Techniques For Control Acoustic Response of Corner-Pinned Rectangular Plate Using Piezo-electric Actuator

  • Jung, Do-Hee;Kim, Woo-Young;Lee, Sang-Kee;Park, Seen-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • Acoustic response control of a comer-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four comers. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies (0~200Hz), and sound pressure levels (80~100dB) as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System (구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용)

  • Lee, Cang-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

Control of Acoustic Response of A/C Rectangular Plate Using Piezo Electric Material (압전 소자를 이용한 항공기용 사각박판에 대한 음향 반응제어)

  • Jung, Do-Hee;Park, Seen-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.633-636
    • /
    • 2004
  • Acoustic response control of a corner-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four comers. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies $(0\sim200Hz)$, and sound pressure levels $(80\sim100dB)$ as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

  • PDF

ANALYSIS ON THE VIBRO-ACOUSTICAL CHARACTERISTICS OF A PANEL-CAVITY COUPLED SYSTEM

  • Kim, Seock-Hyun;Kang, Sang-Wook;Lee, Jang-Moo
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.34-44
    • /
    • 2002
  • Theoretical analysis Is carried out to identify the modal coupling effect between some particular acoustic modes of a vehicle compartment cavity and vibration modes of body panels like side doors, roof or floor. A simplified panel-cavity coupled model is investigated on the coupled resonance frequencies, modes and frequency response characteristics. Through parametric study, It Is possible to explain how the acoustic response of a coupled system will be determined by the vibration and acoustic property of the individual panel and cavity system. Full coupled system shows some interesting features different from those of the semi-coupled system In frequency, mode and acoustic response.

  • PDF

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

A Study on Acoustic and Vibratory Response of a MEMS Resonant Accelerometer (공진형 MEMS 가속도계의 음향가진 반응특성 연구)

  • Lee, Sang Woo;Lee, Hyung Sub;Yu, Myeong-Jong;Kim, Do Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1330-1336
    • /
    • 2015
  • It is necessary to study on acoustic and vibratory response of a MEMS resonant accelerometer before applying to military applications. In this paper, we analyze why the resonant accelerometer reacts to an acoustic wave and a high frequency vibration. And we describe experimental results on acoustic and vibratory response of the accelerometer. The accelerometer consists of a proof mass and a dual ended tuning fork. It is a differential resonant accelerometer with arranging a pair of accelerometers. The mode shape was analyzed to find out the input mode frequency by using a FEM simulation. Some experiments regarding the acoustic noise was carried out by using a tweeter and a microphone in the anechoic room. Results showed that the accelerometer reacted to the acoustic wave and vibration which had the input mode frequency as we had expected. We showed experimentally not only that the susceptibility of the accelerometer to an acoustic wave was 70 dB but also that the effectiveness of applying an acoustic absorber and a metal case was 20 dB, respectively. Also, we could minimize the vibratory response property of the accelerometer by installing a IMU with a silicone rubber mount pad.