• Title/Summary/Keyword: Acoustic noise reduction

Search Result 445, Processing Time 0.024 seconds

A Study on the Acoustic Power DB Building for Korean Railroad in order to Predict Nearby Noise (한국철도 환경소음예측을 위한 음향파워 DB 구축에 관한 연구)

  • 조준호;이덕희;정우성;신민호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.265-270
    • /
    • 2001
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requested, At home and abroad, many studies for prediction of railway nearby noise have been accomplished, But it is impossible to predict exactly for the Korean Railroad, because the acoustic power DB for each rolling stock used in Korea has not been builded yet. So in this study, acoustic power DB for each Korean rolling stock such as Samaeul, Mugungwha was builded according to the speed and rail support systems. Predicted results using accumulated acoustic power DB are compared with measured results and it is known that accumulated acoustic power DB can be used for more precise prediction of railway nearby noise.

  • PDF

Prediction of acoustic power radiated from an airfoil with thickness in turbulent flow (난류 유동장 내 두께를 가지는 단일 에어포일의 음향파워 예측)

  • Kim, Daehwan;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.353-358
    • /
    • 2013
  • Present paper deals with turbulence-airfoil interaction noise and mainly investigates the effects of airfoil thickness on the broadband noise spectrum. The acoustic power radiation from an airfoil is predicted using high-order time-domain method, which is based on the computational aeroacoustic technique solving the linear Euler equations. The homogeneous and isotropic turbulence is generated by utilizing the synthetic turbulence modeling based on random particle method. The airfoils taken into consideration are a flat-plate and a NACA0012 airfoil aligned with uniform mean flow. The effects of airfoil thickness on the radiated inflow turbulence noise are investigated by comparing acoustic power spectrum predicted for each airfoil. The comparison of acoustic power spectrum reveals that the airfoil thickness significantly contributes the high frequency noise reduction.

  • PDF

A Study on Acoustic Radiation Optimization of Vibrating Panel Using Genetic Algorithm (유전자 알고리즘을 이용한 판넬구조물의 구조음향 최적화에 관한 연구)

  • Jeon, Jin-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Globally, customer appreciation and demand for quieter products has driven noise control engineers to develop efficient and quieter products in a relatively short time. In the vehicles and ship industry, noise has become an important attribute because of the competitive market and increasing customer awareness. Noise reduction is often achieved through structural modifications by typical approaches. In the present paper, author describes a fundamental study on optimum design of curvature. Bezier curve. and rib attachment to reduce noise from simple panel using a genetic algorithm(GA). The acoustic optimization procedure employed p-FEM for structural analysis, the Rayleigh integral method for acoustic analysis and the GA for searching optimum design. In the optimization procedure. the objective function to be minimized is the average sound power radiated from an objective structure over a given frequency range $0{\sim}300$ Hz.

Switching Noise Reduction for Compressor using Random PWM (Random PWM을 이용한 Compressor의 스위칭 소음 저감)

  • 양순배;김학원;조관열
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.688-691
    • /
    • 1999
  • Recently, it is increased to adopt inverter system to household electrical appliances, especially in ai conditioner and refrigerator. Inverter system is adopted for improving the efficiency. But Inverter system makes acoustic noise caused by switching frequency. In household electrical appliace, it is important to reduce acoustic noise. And in some cases it is possible to magnify the acoustic noise caused by switching, by system which may have different transfer characteristic. In this paper, random PWM method was adopted in inverter refrigerator using 8 bit microprocesso. We found useful PWM frequency and adoptation method.

  • PDF

A numerical study on the noise reduction methods of centrifugal impeller (원심형 임펠러의 저소음화에 대한 연구)

  • Jeon, Wan-Ho;Chung, Phil-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.129-136
    • /
    • 2000
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed Information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

The Study on ODD Acoustic Noise Reduction by Using Micro Muffler (마이크로 머플러를 이용한 ODD소음 저감에 관한 연구)

  • Moon, Byeong-Gi;Cha, Sung-Woon;Lee, Byung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.50-55
    • /
    • 2006
  • As high performance and high speed have been accomplished by technology of optical disk drive. optical disk drives have gradually high percentage of the market share in market of storage devices. This technology helps to improve the quality of record/reproduction. However, simultaneously it causes various problems in the structural aspect and increases noise largely. Especially at high speed, dominant noise is more influenced by fluid noise than by structure-borne noise. The purpose of this study is that reduce the air-born noise in optical disk drive as it decreases a quantity of flow by using a micro muffler. The micro muffler is a miniaturized muffler. The muffler is used widely by solution to reduce air-borne noise which is generated by flow. According to frequency band of the noise source, it can be applied by muffler of various forms. In this study, we examined the acoustic characteristics of the micro muffler and applied it to reduction of the ODD noise. It could get an excellent noise reduction in high frequency band through the decrease of an inner flow. But it could not get a noise reduction in low frequency band.

  • PDF

A study on the reduction of noise and vibration by acoustic resonance in the tube bank of a circulating fluidized bed combustion boiler (순환 유동층 보일러 관군의 음향공진에 의한 이상소음 발생 및 저감 연구)

  • Park, Eung-Kyu;Song, Keun-Bok;Kim, Won-Hyun;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.101-106
    • /
    • 2011
  • In the present paper, the phenomena of abnormal noise and vibration due to acoustic resonance of CFBC(Circulating Fluidized Bed Combustion) boiler was presented. The acoustic resonance which occurred in the gas path of CFBC boiler system was caused by coincidence of vortex shedding frequency of tube bank and acoustic natural frequency of duct and hopper. And, the phenomena of beating arose from the interference of two closed resonant waves at 66.4Hz and 70.8Hz. There are two control methods for acoustic resonance in this system. The first method is to change the vortex shedding frequency from the structural alterations on the tube bank. And the second method is to change the acoustic natural frequency of the gas path with the installation of anti-noise baffles. The second one which is relatively easy to apply, was adapted in this study. As a result, the noise and vibration level have been decreased by 41dB and 94% at 66.4Hz, respectively. And the improvement of noise and vibration at 70.8Hz was identified by sensory evaluation.

  • PDF

Evaluation on Reduction Effect of Dam Hydraulic Turbine Dynamo Noise using Auralization (가청화를 이용한 댐 수차 발전기소음의 저감효과 평가)

  • Jung, Eun-Jung;Jung, Chul-Woon;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.253-257
    • /
    • 2007
  • In case of the hydraulic turbine dynamo room at Dam, due to its big volume and reflexible finishing material, since the noise of electricity-generation is amplifying, it influences the difficulty of mutual communication among the workers, also it is causing both mental and physical damages to those workers in the neighboring office. Accordingly, after presentation of the optimized renovation model of the hydraulic turbine dynamo room using the acoustic simulation, this Research has compared and evaluated them using the auralizational technique between the present condition of "before improvement" and the acoustic condition of "after improvement". As the result of psycho-acoustics experiment, as the acoustic conditions at both "before & after Improvement" were apparently compared, it appeared that there is a considerable amount of noise-reduction effect at psycho-acoustics. It is considered that such material could be utilized as the valuable data hereafter for the time when any construction and renovation of the hydraulic turbine dynamo room and other similar workshop.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.