• Title/Summary/Keyword: Acoustic density

Search Result 311, Processing Time 0.026 seconds

Effect of Acoustic Reflector's Surface Density on Sound Absorption Characteristics and Stage Acoustics (음향 반사판의 밀도별 흡음특성 및 무대음향에의 영향)

  • Kim, Young-Sun;Jeong, Jeong-Ho;Jeon, Jin-Yong;Kim, Myeong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • In concert halls and auditoriums, acoustic reflector and stage enclosure is one of the main factors on the room and stage acoustic characteristics. As a stage enclosure and acoustic reflector honey comb based light-weight reflector is widely used, because it is easy to install. However, there was not enough research on the surface density effect on room and stage acoustics. In this study, sound absorption coefficient tests on three kinds of wooden acoustic reflectors with different surface density were conducted. Surface density of acoustic reflector was changed from 11 kg/$m^2$ to 41 kg/$m^2$. For the low frequency excitation, sub-woofer was used with omnidirectional loud-speaker simultaneously. From the experiments, it was found that sound absorption coefficient below 250 Hz band was decrease by the increment of surface density. In order to check the influence of the surface density on room and stage acoustic parameters, room acoustic simulation was conducted with sound absorption coefficients, which were tested in reverberation chamber. By the increment of surface density of acoustic reflector, RT(reverberation time) and EDT(early decay time) were increased. Also, ST(stage support) was improved in low frequency bands.

Acoustic method for discriminating plankton from fish in Lake Dom Helvecio of Brazil using a time varied threshold (시간변량역치를 이용한 브라질 Dom Helvecio호수의 어류와 플랑크톤 생물의 음향적인 구분을 위한 기법)

  • Kang, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.495-503
    • /
    • 2012
  • An acoustic method for discriminating plankton from fish, in Lake Dom Helvecio of Brazil, is developed. The flow of data from this method is comprised of time varied threshold (TVT), dilation filter, bitmap and mask functions. The TVT can, of itself, precisely explain how to select an appropriate value. The final results of the echogram, which only shows plankton by masking fish signals, is used to examine the acoustic density of plankton by depth and time. The results indicate that the acoustic density of the plankton is at a depth of between 5m to 15m, its density is especially high at 10m to 15m. The results of the acoustic density of plankton by time indicate that May 7 is higher in density than May 8. Future study plans include the use of net samples, environmental datasets to identify the abundance and ecology described by the Chaoborus spp. from other species.

THE EFFECT OF DUST PARTICLES ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

  • Choi, Cheong-Rim;Lee, Dae-Young;Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • In this paper we have examined the effect of dust charge density on nonlinear ion acoustic solitary wave which propagates obliquely with respect to the external magnetic field in a dusty plasma. For the dusty charge density below a critical value, the Sagdeev potential $\Psi1(n)$ has a singular point in the region n < 1, where n is the ion number density divided by its equilibrium number density. If there exists a dust charge density over the critical value, the Sagdeev potential becomes a finite function in the region n < 1, which means that there may exist the rarefactive ion acoustic solitary wave. By expanding the Sagdeev potential in the small amplitude limit up to on4 near n=1, we find the solution of ion acoustic solitary wave. Therefore we suggest that the dust charge density plays an important role in generating the rarefactive solitary wave.

Effect of Moisture Contents and Density of Paulownia tomentosa on Acoustical Properties (함수율과 밀도가 참오동나무재의 음향 특성에 미치는 영향)

  • Yoo, Tae-Kyung;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.61-66
    • /
    • 1997
  • Paulownia wood has been used as sound board for Korean traditional musical instruments such as Keomungo(Korean lute), Kayagum(twelve-stringed Korean harp) and Changgu(hour-glass shaped drum), etc. The acoustic properties of wood affected not only by dimensions but also by density and stiffness of wood. Due to inhomogeneity and hygroscopicity of wood. the acoustic properties of wood are inconsistent. To clarify the effect of moisture content and air dry density on acoustic properties, longitudinal vibration experiment was accomplished in 3 moisture content levels of 9.6, 11.1 and 12.5% and in 3 air dry density levels of 0.22, 0.25 and 0.28g/$cm^3$. The results were as follows: As the moisture content increased, the fundamental frequency. specific dynamic Young's modulus and sound velocity decreased, but the internal friction increased so that loss of energy increased. The values in damping of sound radiation were rapidly decreased at 12.5%. It meant that the damping of internal friction was larger than damping of sound radiation at high moisture content. As the air dry density increased, the fundamental frequency, specific dynamic Young's modulus and sound velocity increased, but the internal friction and damping of sound radiation decreased so that loss of energy decreased. And acoustic converting efficiency was hardly influenced by increasing air drying density.

  • PDF

Measurements of Sound Speed and Density Contrasts of the Moon Jellyfish (Aurelia aurita s.l.) for Hydroacoustic Model (수중음향 모델을 위한 보름달물해파리(Aurelia aurita s.l.)의 체내 음속비 및 밀도비)

  • Kang, Don-Hyug;Lee, Chang-Won;Lee, Hyung-Been;Kim, Mi-Ra
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.85-91
    • /
    • 2012
  • Physical properties such as sound speed contrast (h) and density contrast (g) of the interested target are key parameters to understand acoustic characteristics by using theoretical scattering models. The density and sound speed of moon jellyfish (common jellyfish, Aurelia aurita s.l.) were measured. Sound speed contrast (h) was measured from travel time difference (time-of-flight method) of an acoustic signal in a water tank for APOP studies (Acoustic Properties Of zooplankton). Density contrast (g) was measured by the displacement volume and wet weight (dual-density method). The sound speed remained almost constant as the moon jellyfish increased in bell length. The mean values${\pm}$standard deviation of h and g were $1.0005{\pm}0.0012$ and $0.9808{\pm}0.0195$), respectively. These results will provide important input for use in theoretical scattering models for estimating the acoustic target strength of jellyfish.

FEASIBILITY STUDY OF SOUND POWER BASED ACTIVE NOISE CONTROL STRATEGIES FOR GLOBAL NOISE REDUCTION

  • Kang, Seong-Woo;Kim, Yang-Hann
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.785-790
    • /
    • 1994
  • The active noise control which regards the acoustic power as a target function to be minimized, is analyzed to test its feasibility of which simplifies the measurement system compared with the global acoustic energy based active noise control system. In fact, it is found that the acoustic power based active noise control strategy is equally likely as good as the global acoustic energy based active noise control method if the acoustic field of interest is diffusive or very low model density one. In the intermediate model density field, we also demonstrate that the power based control gives the similar results as the energy based control in terms of global sound energy reduction for the lightly damped enclosure which might be most important system in practical application. From all the theoretical and power based control strategy is dependent on the characteristics of the acoustic field to be controlled; i.e., the model density distribution, the degree of reverberation, and on the strength of modal interaction of the control source with the primary source; i.e., the location of control source.

  • PDF

Density estimation of euphausiids and copepods by using a multi-frequency method

  • Woo Seok Oh;Geun Chang Park;Jung-Hwa Choi;Hyoung Been Lee;Kyounghoon Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.689-697
    • /
    • 2023
  • This study used a multi-frequency acoustic method to assess the density and spatial distribution of dominant zooplankton, euphausiids and copepods, which are representative species of the zooplankton immigrating the sea around Republic of Korea. Acoustic surveys were carried out in the East Sea and South Sea from June 16 to 29, 2017, using the research vessel Tamgu 20th from the National Institute of Fisheries Science. From the results of the acoustic survey, the distribution of euphausiids was relatively higher in the East Sea than in the South Sea. Additionally, although the distribution of copepods was low in all areas, they were abundant in certain areas in the East Sea and the southern area of the Jeju Sea. Euphausiid and copepod density was estimated to be 1.2 g/m2 (CV = 19.1%) and 2.8 g/m2 (CV = 23.5%), respectively.

Characteristics of Coupled Acoustic Wave Propagation in Metal Pipe (금속 배관의 연성된 음향 전파 특성)

  • Kim, Ho-Wuk;Kim, Min-Soo;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.267-273
    • /
    • 2008
  • The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition (정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

Three-dimensional Numerical Study on Acoustic Performance of Large Splitter Silencers (대형 스플리터 소음기 성능에 대한 3차원 수치해석적 연구)

  • Baek, Seonghyeon;Lee, Changheon;Gwon, Daehun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.