• 제목/요약/키워드: Acoustic center spacing

검색결과 5건 처리시간 0.019초

광대역 FIR 빔형성기 파라미터 결정에 관한 연구 (A Study on the Determination of a Broadband FIR Beamformer Parameter)

  • 최영철;김승근;김시문;박종원;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.386-389
    • /
    • 2004
  • Beamforming for underwater acoustic communication is affected by the broadband feature of underwater acoustic communication signal, which has the low center frequency compared to the signal bandwidth. In this paper, the baseband equivalent array signal model is derived and we present computer simulation results for the broadband finite impulse response (FIR) beamformer performance according to the FIR filter order and the tap spacing. If the FIR filter order is increased above the optimum value, the beamformer performance is degraded. Also the tap spacing is related to the optimum FIR filter order.

  • PDF

50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 지향성 보정 및 위치각 추정 (Estimation of Angular Location and Directivity Compensation of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder)

  • 이대재
    • 한국수산과학회지
    • /
    • 제44권4호
    • /
    • pp.423-430
    • /
    • 2011
  • The most satisfactory split-beam transducer for fish sizing maintains a wide bearing angle region for correct fish tracking without interference from side lobes and lower sensitivity to fish echoes outside of the main lobe region to correctly measure the angular location of free-swimming fishes in the sound beam. To evaluate the performance of an experimentally developed 50 kHz split-beam transducer, the angular location of a target was derived from the electrical phase difference between the resultant signals for the pair of transducer quadrants in the horizontal and vertical planes consisting of 32 transducer elements. The electrical phase difference was calculated by cross-spectral density analysis for the signals from the pair of receiving transducer quadrants, and the directivity correction factor for a developed split-beam transducer was estimated as the fourth-order polynomial of the off-axis beam angle for the angular location of the target. The experimental results demonstrate that the distance between the acoustic centers for the pair of receiving transducer quadrants can be controlled to less than one wavelength by optimization with amplitude-weighting transformers, and a smaller center spacing provides a range of greater angular location for tracking of a fish target. In particular, a side lobe level of -25.2 dB and an intercenter spacing of $0.96\lambda$($\lambda$= wavelength) obtained in this study suggest that the angular location of fish targets distributing within a range of approximately ${\pm}28^{\circ}$ without interference from side lobes can be measured.

Development of a Spherically Focused Capacitive-film Air-coupled Ultrasonic Transducer

  • Song, Jun-Ho;Chimenti Dale E.
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.446-450
    • /
    • 2005
  • We have built a spherically focused, not using acoustic mirrors, capacitive micromachined air-coupled ultrasonic transducer. A flexible backplate of a copper/polyimide backplate is used, permitting it to conform to a spherically shaped substrate. The backplate is patterned with $40-{\mu}m$ depressions having $80-{\mu}m$ center-to-center spacing. A $6-{\mu}m$ thick aluminized Mylar film completing the transducer is deformed to allow it to conform to the spherical backplate. The device's frequency spectrum is centered at 805kHz with -6dB points at 440 and 1210kHz.

반복 전송 다이버시티 기법에 따른 OFDM 기반 수중 음향 통신 시스템의 실해역 성능 분석 (Performance Analysis of OFDM-based Underwater Acoustic Communication System by Repeated Transmit Diversity Technique)

  • 채광영;고학림;김민상;조용호;임태호
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1434-1442
    • /
    • 2019
  • 본 논문에서는 인천 덕적도 부근 해안에서 2017년 7월 5일부터 24시간 동안 채널 변화를 지속적으로 측정하였다. 수중 채널은 실시간으로 시간 축에서 변화와 주파수 축에서 변화가 발생함에 따라서 다양한 채널 환경 특성을 가지고 있으며, 다중 경로 페이딩 및 도플러 효과 등으로 인하여 수중 통신 성능저하가 발생한다. 따라서, 본 연구에서는 실해역 수중 통신 환경에서의 통신 성능 향상을 위하여 시간 및 주파수 영역에서의 반복 전송 다이버시티 기법을 적용하여 수중 채널 환경에서의 OFDM 시스템 성능 분석에 관한 연구를 수행하였다. 수집한 데이터를 이용하여 시간과 주파수 영역에서의 채널 환경 비교를 수행하였으며, 파일럿 배치 간격과 시간 및 주파수 축에서의 반복 전송 회수에 따른 BER 성능 분석을 수행하였다.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.