• Title/Summary/Keyword: Acoustic cavity(음향공)

Search Result 78, Processing Time 0.017 seconds

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 해석)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.28-37
    • /
    • 2002
  • Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

Case Study on Combustion Stabilization in FASTRAC combustor using Acoustic Cavities (FASTRAC 연소기에서 음향공을 이용한 연소불안정 제어 사례 연구)

  • Kim, Hong-Jip;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.16-23
    • /
    • 2012
  • 3-D linear acoustic analysis has been performed to elucidate damping characteristics of large Helmholtz acoustic cavities in FASTRAC combustor. Acoustic impedance concept has been introduced to quantify combustion stabilization capacity. For a given acoustic cavity, sonic velocity in cavity to achieve an optimal tuning has been determined and satisfactory agreement with the previous results has been obtained. Feasible estimation of sonic velocity in acoustic cavity has been devised. Results show similar trends without significant deviations, which can be used in the procedure of design and verification of acoustic cavity. From the satisfactory results, investigation of other combustors with acoustic cavities which have shown combustion instabilities will be done as future works.

  • PDF

Case Study on Combustion Stabilization in FASTRAC Thrust Chamber Using Acoustic Cavities (FASTRAC 연소기에서 음향공을 이용한 연소불안정 제어 사례 연구)

  • Kim, Hong-Jip;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.29-36
    • /
    • 2012
  • 3-D linear acoustic analysis has been performed to elucidate damping characteristics of large Helmholtz acoustic cavities in FASTRAC thrust chamber. Acoustic impedance concept has been introduced to quantify combustion stabilization capacity. For a given acoustic cavity, sonic velocity in the cavity to achieve an optimal tuning has been determined and satisfactory agreement with the previous results has been obtained. Feasible estimation of sonic velocity in the acoustic cavity has been devised. Results show similar trends without significant deviations, which can be used in the procedure of design and verification of acoustic cavity. From the satisfactory results, investigation of other thrust chambers with acoustic cavities which have shown combustion instabilities will be done as future works.

The effects of the Control of Combustion Instabilities in accordance with various Acoustic Cavities (음향공 형상에 따른 연소 불안정 제어 효과)

  • Cha Jung-Phil;Yang Jea-Jun;Seo Ju-Hyoung;Kim Hong-Jip;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.73-76
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. Geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

  • PDF

A Study on the Acoustic Damping Characteristics of Acoustic Cavities in a Liquid Rocket Engine (로켓엔진에서 음향공의 음향학적 감쇠능력에 대한 고찰)

  • Kim Hong Jip;Kim Seong-Ku;Choi Hwan Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.291-298
    • /
    • 2005
  • Linear acoustic analysis has been performed to elucidate damping characteristics of acoustic cavities. Results have shown that resonant frequencies of acoustic cavity obtained by classical theoretic approach and present linear analysis are somewhat different from each other. This difference is due to the limitation of classical theory. To quantify the damping characteristics, acoustic impedance has been introduced and resultant absorption and conductance have been evaluated. Satisfactory agreement has been achieved with previous experiment. Finally the design procedure for optimal tuning of acoustic cavity has been established

  • PDF

Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities (연소불안정 제어를 위한 음향공의 감쇠에 대한 형상 효과)

  • 차정필;고영성;고영성
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.59-66
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. First, harmful resonant frequency in a modeling chamber can be damped effectively by the installation of properly-tuned acoustic cavity. Besides, geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency. Finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

A Study on the Acoustic Damping Characteristics of Acoustic Cavities in a Liquid Rocket Combustor (로켓연소실에서 음향공의 음향학적 감쇠에 대한 정량적 고찰)

  • Kim, Hong-Jip;Kim, Seong-Gu;Choe, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.195-204
    • /
    • 2006
  • A linear acoustic analysis has been performed to elucidate damping characteristics of acoustic cavities in a liquid rocket combustor. Results have shown that resonant frequencies of acoustic cavity obtained by classical theoretic approach and by the present linear analysis are somewhat different with each other. This difference is attributed to the limitation of the simplified classical theory. To quantify the damping characteristics, acoustic impedance has been introduced and resultant absorption coefficient and conductance have been evaluated. Satisfactory agreement has been achieved with previous experiment. Finally the design procedure for an optimal tuning of acoustic cavity has been established.

  • PDF

Acoustic Transmission Characteristics of the Cylindrical Cavity with an Auxiliary Cavity and a Gap (보조 공동과 간극을 갖는 원통형 공동의 음향 전달 특성)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2010
  • In this paper, acoustic transmission characteristics are theoretically considered on a cylindrical cavity system. The cylindrical cavity system is a simplified model of the acoustic cavity of King Seongdeok Divine Bell and it consists of a main cavity, a gap and an auxiliary cavity, Under a point sound source in the main cavity, acoustic frequency response property is determined and acoustic modes are analysed. The results are compared with those by the boundary element analysis using SYSNOISE. Using the proposed theoretical method, the effect of the auxiliary cavity and the gap on the resonance frequency and sound transmission characteristics is identified. Finally the best combination of the auxiliary cavity and gap is determined for the maximum transmission of the source frequency.

A Study on the Acoustic Damping Characteristics of Acoustic Cavities in a Liquid Rocket Combustor (로켓연소실에서 음향공의 음향학적 감쇠에 대한 정량적 고찰)

  • Kim Hong Jip;Kim Seong-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-40
    • /
    • 2006
  • A linear acoustic analysis has been performed to elucidate damping characteristics of acoustic cavities in a liquid rocket combustor. Results have shown that resonant frequencies of acoustic cavity obtained by classical theoretic approach and by the present linear analysis are somewhat different with each other. This difference is attributed to the limitation of the simplified classical theory. To quantify the damping characteristics, acoustic impedance has been introduced and resultant absorption coefficient and conductance have been evaluated. Satisfactory agreement has been achieved with previous experiment. Finally the design procedure for an optimal tuning of acoustic cavity has been established.