• Title/Summary/Keyword: Acoustic Waves

Search Result 496, Processing Time 0.024 seconds

The Response of the Solar Chromosphere and Transition Region to a Coronal Rain Event

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.83.4-84
    • /
    • 2015
  • We report that a strong downflow event caused three-minute oscillations in the solar atmosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) and the Interface Region Imaging Spectrograph (IRIS). Our main findings are as follows: (1) The strong downflow was seen at the $H{\alpha}$ absorption line at first, and then appeared at the Si IV and C II emission lines. It seems that the characteristics of the downflow are consistent with a coronal rain event. (2) After the event, oscillations of velocity were identified in the chromospheric lines and transition region lines. (3) The amplitudes of oscillations were 2km/s at Mg II line and 3km/s at C II and Si IV lines and decreased with time. (4) The period of the oscillation was 2.67 minutes at first, but gradually increased with time. Our findings are in agreement with Chae & Goode (2015)'s theory that of acoustic waves generated by a disturbance in a gravitationally-stratified medium.

  • PDF

Noise and Vibration Reduction by using the Band Gap Phenomenon (밴드 갭 현상을 이용한 소음, 진동 차단)

  • Kim Hyun-Sil;Kim Jae-Seung;Kang Hyun-Ju;Kim Bong-Ki;Kim Sang-Ryul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.287-290
    • /
    • 2000
  • In periodic structures where two or more materials of different density and sound speeds are arranged, there exist stop bands, in which waves cannot propagate. In this paper noise and vibration reduction by using band gap phenomena is discussed. The general theoretical background is presented and experimental results for acoustic wave attenuation in 2D cylinder arrays are described.

  • PDF

Measurement of Infinitesimal Delaminaton Thickness by Echo Amplitude of Ultrasonic Wave (초음파의 에코 높이를 이용한 미소(微小) 박리(剝離) 두께 측정에 관한 연구)

  • Han, E.K.;Jang, K.Y.;Hwang, B.I.;Lee, B.S.;Park, I.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • If the infinitesimal delamination exists and the two waves can hardly be distinguished from each other on account of being much closer, we cannot measure the thickness of delamination by the time difference method. On this study, we calculated the thickness of infinitesimal delamination model by means of measuring echo height due to the deflection of material particles and utilized Newton Ring for optical measurement as a delamination model. From the result of Newton Ring expressed in the delamination model, we can calculate the infinitesimal delamination thickness up to $0.2{\sim}0.3{\mu}m$ due to the difference of acoustic impedance by the ratio of the echo height to the total reflection.

  • PDF

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Identification of the Shear Velocities of Near Surface Soils Using Torsional Guided Waves (비틀림 유도파를 이용한 근지표면 전단속도 규명)

  • Park, Kyung-Jo;Oh, Hyung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.771-776
    • /
    • 2012
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear(S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fumdamental T(0,1) mode that propagates along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using T(0,1) mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities as a function of depths are formulated using power law curves.

Development of Ultrasonic-Optical Fiber Sensor and its Applications (초음파-광섬유 센서의 개발과 그 응용)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

Realization of Scattering Acoustic Holography using Plane-wave Decomposition (평면파 분리 방법을 이용한 산란 음향 홀로그래피의 구현 방법론)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.498-501
    • /
    • 2006
  • When an object or objects, rigid or flexible, presents in incident sound field, the sound wave is scattered. This, we call, is scattered sound field. It, of course, depends on the amplitude and the direction of the incident sound field as well as the geometry and the surface impedance of the scatterer(object). This paper addresses the way to measure scattered sound field by using arbitrary incident sound wave. This means that the method can decompose the scattered field from measured sound field with respect to any magnitudes and directions of incident plane-waves.

  • PDF

Physical characteristics of internal waves and its influence on acoustic propagation in the East Sea (동해 내부파의 물리적 특성과 음파전달에의 영향)

  • Han Bong Wan;Nam Sung Hyun;Yun Jae Yul;Kim Kuh;Kim Seongil;Kim Young-Gyu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.421-424
    • /
    • 2004
  • 한국 동해시 연안역에서 2001년 6월, 2003년 5월 및 2004년 5월 해상실험 및 실시간 모니터링 부이 시스템을 통해 수집된 해양관측(수온, 유속)자료와 SAR (Synthetic Aperture Radar)위성영상을 분석한 내부파의 물리적 특성을 정리하였다. 이를 토대로 음파전달 모델(RAM)을 통해 내부파에 의한 음파전달 영향을 파악하고, 음도파관 불변 이른(Waveguide invariant theory)을 적용하여 내부파에 의한 해양 변동성을 음향학적으로 정량화 하였다.

  • PDF

Polarization and Charge Transport in Epoxy (에폭시의 분극 및 전하 이동)

  • Ahn, Jong-Hyun;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.229-230
    • /
    • 2008
  • The investigations included the measurements of volume currents and also internal space charges on epoxy samples of mm thicknesses. The current versus time relations were shown to correspond well with classical forms of dielectric response such as the Curie-von Schweidler model. After the time transient, near steady currents were extremely small and exhibited a significant temperature dependence, similar in relation to the Poole-Frenkel hoping transport model. Equivalent resistances were on the order of $10^{19}$ ohms and represent very weak charge transport. Electrically stimulated acoustic waves were used to quantify the small internal charges that would accumulate within the epoxy. There was a notable homocharge near both anode and cathode. The dielectric response and the internal charge were related to show a consistent model for charge transport within unfilled epoxy.

  • PDF

Mixing Augmentation of the Compressible Parallel Jets Using the Irradiation of Ultrasonic Waves (초음파 조사를 이용한 압축성 평행 제트의 활성화)

  • Chang Se-Myong;Shin Seong-Ryong;Lee Soogab
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • An experimental model to enhance the mixing of parallel supersonic-subsonic jet ($M_1$=1.78 and $M_2$=0.30) is simulated with a numerical technique by modeling the wall-mounted cavity to a boundary condition of oscillating pressure. The computed pilot pressure distributions along three representative cross sections show a good agreement with the equivalent experimental data. The irradiation of acoustic wave in the ultrasonic range causes the mixing augmentation of jet and wake due to the transfer of vibration energy between fluid particles.

  • PDF