• 제목/요약/키워드: Acoustic Waves

검색결과 496건 처리시간 0.026초

제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구 (A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure)

  • 황인주;김윤제
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동 (Acoustic, Entropy and Vortex Waves in a Cylindrical Tube With Variable Section Area)

  • 조규식
    • 한국추진공학회지
    • /
    • 제8권4호
    • /
    • pp.55-66
    • /
    • 2004
  • 본 논문에서는 로켓 엔진의 고주파 연소불안정 현상이 연소현상과 맞물린 음향학적 현상이라는점과 일반적으로 로켓엔진의 연소실 및 배기노즐이 원통형이라는 점을 고려하여 단면적이 변하는 원통형 관에서 음향, 엔트로피 및 와류 파동방정식의 해를 구하는 방법을 제시하였고 이를 통하여 엔트로피 및 와류파동이 음향파동에 미치는 영향을 수학적으로 해석 및 계산 할 수 있는 방법을 제시하였다. 이를 바탕으로 초음속 노즐에서 음향파동의 반사계수를 계산해 봄으로서 엔트로피 및 와류파동이 음향파동의 반사율을 강화 혹은 약화시킬 수 있다는 것을 보였다.

우주발사체 발사 시 음향하중 저감을 위한 발사대 설계 (Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff)

  • Tsutsumi, Seiji
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.331-341
    • /
    • 2020
  • 우주발사체는 발사 시 추진장치에서 발생하는 고강도 소음에 의한 음향하중의 영향을 받는다. 로켓소음은 발사체와 페이로드 내 전자 및 기계 부품의 손상 및 오작동을 유발할 수 있기 때문에 음향하중의 예측 및 저감은 설계에 있어 중요한 고려사항이다. 본 논문에서는 로켓 소음의 생성 및 발사대의 음향설계 기법에 대한 최신 연구동향을 논하였다. 특히, 새로운 발사대 설계 방법론의 예로서 일본 Epsilon 로켓 발사대의 개발과정을 기술하였다. 전산유체역학 모사 및 1/42 축소모형 실험을 통하여 설계된 발사대의 음향하중 저감 효과를 Epsilon 로켓의 실제 비행 데이터 분석을 통하여 검증하였다.

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제24권2호
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF

가스터빈 연소기에서 엔트로피파에 대한 고찰 (Review of Entropy Wave in a Gas Turbine Combustor)

  • 김대식;윤명곤
    • 한국연소학회지
    • /
    • 제23권1호
    • /
    • pp.28-35
    • /
    • 2018
  • Entropy waves(or hot spots) in a gas turbine combustor are generated by irregular heat release from flames, then can be coupled with acoustic waves when they are accelerated at the exit of the combustor. This coupling mechanism between the entropy and the acoustic waves is generally known to be one of the triggers for combustion instability, which is commonly called "indirect" combustion noise. This paper reviews the fundamental theories on generation, propagation, and coupling with acoustic field of entropy waves and recent research results on the indirect combustion noise for gas turbine combustors.

초음파 진동을 이용한 마찰 및 음향부상에 의한 물체의 수송 (Friction-Based and Acoustically-Levitated Object Transport Using Ultrasonic Vibration)

  • Byoung-Gook Loh;Yong-Kuk Park
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.590-599
    • /
    • 2003
  • In this study. object transport method based on ultrasonic flexural vibration is presented. Ultrasonic vibration generates ultrasonic traveling waves on the surface of elastic medium. Objects are transported through the interaction with traveling waves propagating in medium. Two types of transport methods are studied: frictional drive and acoustic levitation. With frictional drive, objects are transported in contact with the beam in the opposite direction of wave propagation whereas with acoustic levitation, objects are acoustically levitated above the beam surface and transported in the wave propagation direction. Transport characteristics are experimentally investigated using objects of different shapes and sizes. The transition from acoustic levitation mode to frictional drive mode is also examined. and it is found to occur when the ratio of mass to area of an object exceeds the threshold ratio of mass to area. It is envisaged that this feasibility study will serve as a stepping-stone for ultrasonic vibration to become an effective industrial material handling device in the future.

초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계 (Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler)

  • 김연환;배용채;김재원;이두영;허해용
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

충격파-와동 간섭 및 음향 방사에 대한 수치 모델 (A Computational Model on Shock-Vortex Interaction and Acoustic Radiation)

  • 장세명;이수갑;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.45-50
    • /
    • 2000
  • We study a conceptual numerical model on shock-vortex interaction setting an impulsive shock in a compressible vertex. Navier-Stokes equations are solved for the investigation of interactive structure and acoustic wave propagation. The rotationally symmetric vortex enforces two compression-expansion pairs resultantly forming a quadrupolar shape. These compressive and expansive waves cylindrically propagate to the far field and turn to acoustic waves. Using a fine uniform Cartesian grid system and a TVD-high resolution method, the flow data irl: precisely obtained to extend our interest to the sound source.

  • PDF

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na Young-Nam
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.189-197
    • /
    • 1999
  • To investigate internal waves (IW) effect on acoustic wave propagation, m analysis is conducted on mode travel time and model simulation. Based on the thermistor string data, it can be shown that the thermocline depth variation may cause travel time difference as much as 4-10 ms between mode 1 and 2 over range 10 km. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additionally spatial variation of IW. Model simulation with all modes and simple IW shows clear responses of acoustic signals to IW, amplitude and phase fluctuation.

  • PDF

태양열 적용을 위한 열음향 레이저의 특성 비교 연구 (A Comparative Study on the Characteristics of Thermoacoustic Laser for Applying Solar Energy)

  • 박성식;안응진;오승진;천원기;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.105-112
    • /
    • 2012
  • The conversion of solar energy into acoustic waves is experimentally studied. Measurements were made on the Sound Pressure Level (SPL), frequency, onset time and the temperature gradient across the stack. A pyrex resonance tube is used with a honey-comb structure ceramic stack along with Ni-Cr and Cu wires. An AL1 acoustical analyzer was used to measure the SPL and frequency of acoustic waves whereas K-type thermocouples were hired to estimate temperature gradients. For a resonance tube of 100 mm, no acoustic waves were generated with a power input of 25W. By increasing its length to 200 mm, however, maximum SPLs of 96.4 dB, 106.3 dB and 112.8 dB were detected for the tubes of 10mm,20mm and 30mm in IDs and their respective stack positions of 70mm, 60mm and 50mm from the closed end.