Browse > Article
http://dx.doi.org/10.15231/jksc.2018.23.1.028

Review of Entropy Wave in a Gas Turbine Combustor  

Kim, Daesik (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University)
Yoon, Myunggon (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Society of Combustion / v.23, no.1, 2018 , pp. 28-35 More about this Journal
Abstract
Entropy waves(or hot spots) in a gas turbine combustor are generated by irregular heat release from flames, then can be coupled with acoustic waves when they are accelerated at the exit of the combustor. This coupling mechanism between the entropy and the acoustic waves is generally known to be one of the triggers for combustion instability, which is commonly called "indirect" combustion noise. This paper reviews the fundamental theories on generation, propagation, and coupling with acoustic field of entropy waves and recent research results on the indirect combustion noise for gas turbine combustors.
Keywords
Entropy wave; Gas turbine combustor; Combustion instability; Indirect combustion noise;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Y.C. Yu, J.C. Sisco, V. Sankaran, W.E. Anderson, Effects of Mean Flow, Entropy Waves, and Boundary Conditions on Longitudinal Combustion Instability, Combust. Sci. Technol., 182(7) (2010), 739-776.   DOI
2 A.S. Morgans, I. Duran, Entropy noise: a Review of Theory, Progress and Challenges, Int. J. Spray Combust., 8(4) (2016) 1-14.
3 A.P. Dowling and Y. Mahmoudi, Combustion Noise, Proceedings of the Combustion Institute, 35, 2015, 65-100.
4 Y.J. Shin, S.T. Jeon, Y.M. Kim, Combustion Instability Analysis of LIMOUSINE Burner Using LES-Based Combustion Model and Helmholtz Equation, J. Korean Soc. Combust., 22(3) (2017) 41-46.   DOI
5 J.S. Hong, H.J. Moon, H.G. Sung, W.S. Um, S.H. Seo, D.H. Lee, The Nonlinear Combustion Instability Prediction of Solid Rocket Motors, J. Korean Soc. Propul. Eng., 20(1) (2016) 20-27.   DOI
6 H.J. Kim, S.K. Kim, Case Study on Combustion Stabilization in FASTRAC Thrust Chamber Using Acoustic Cavities, J. Korean Soc. Propul. Eng., 16(5) (2012) 29-36.   DOI
7 D.J. Cha, J.K. Song, J.G. Lee, A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS, J. Korean Soc. Combust., 20(4) (2015) 10-18.   DOI
8 J.W. Son, C.H. Sohn, J.S. Yoon, Y.B. Yoon, Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition, J. Korean Soc. Combust., 22(2) (2017) 1-8.   DOI
9 M.S. Jang, K.M. Lee, A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor, J. Korean Soc. Combust., 21(2) (2016) 29-37.   DOI
10 A.P. Dowling, The Calculation of Thermoacoustic Oscillations, J. Sound Vib., 180(4) (1995) 557-581.   DOI
11 I. Duran, S. Moreau, Solution of the Quasi-one-dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion, J. Fluid Mech., 723 (2013) 190-231.   DOI
12 F. Bake, C. Richter, B. Muhlbauer, N. Kings, I. Rohle, F. Thiele, B. Noll, The Entropy Wave Generator (EWG) : a Reference Case on Entropy Noise, J. Sound Vib., 326(3-5) (2009) 574-598.   DOI
13 Y. Liu, A.P. Dowling, N. Swaminathan, R. Morvant, M.A. Macquisten, L. Caracciolo, Prediction of Combustion Noise for an Aeroengine Combustor, J. Propul. Power, 30(1) (2014) 114-122.   DOI
14 H.C. Mongia, T.J. Held, G.C. Hsiao, R.P. Pandalai, Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors, J. Propul. Power, 19(5) (2003) 822-829.   DOI
15 T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines: operational experience, fundamental mechanisms, and modeling, Progress in Astronautics and Aeronautics, 210, 2005.
16 A.H. Lefebvre, D. Ballal, Gas Turbine Combustion, CRC Press, Boca Raton, 2010.
17 J.E. Temme, P.M. Allison, J.F. Driscoll, Combustion Instability of a Lean Premixed Prevaporized Gas Turbine Combustor Studied Using Phase-Averaged PIV, Combust. Flame, 161(4) (2014) 958-970.   DOI
18 J. O'Connor, V. Acharya, T. Lieuwen, Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes, Prog. Energy Combust. Sci., 49 (2015) 1-39.   DOI
19 C.S. Goh, A.S. Morgans, The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor, Combust. Sci. Technol., 185(2) (2013) 249-268.   DOI
20 A.S. Morgans, C.S. Goh, J.A. Dahan, The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics, J. Fluid Mech., 733 (2013) R2 1-11.   DOI
21 J. Apeloig, F. Herbigny, F. Simon, P. Gajan, M. Orain, S. Roux, Liquid-Fuel Behavior in an Aeronautical Injector Submitted to Thermoacoustic Instabilities, J. Propul. Power, 31(1) (2015) 309-319.   DOI
22 J.C. Oefelein, V. Yang, Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines, J. Propul. Power, 9(5) (1993) 657-667.   DOI
23 B.T. Chu, L.S.G. Kovasznay, Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas, J. Fluid Mech., 3(5) (1958) 494-514.   DOI
24 S. Tachibana, K. Saito, T. Yamamoto, M. Makida, T. Kitano, R. Kurose, Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion, Combust. Flame, 162(6) (2015) 2621-2637.   DOI
25 A.R. Karagozian, Acoustically Coupled Combustion of Liquid Fuel Droplets, Appl. Mech. Rev., 68(4) (2016) 040801.   DOI
26 K.T. Kim, J.G. Lee, B.D. Quay, D.A. Santavicca, Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustor, Combust. Flame, 157(9) (2010) 1718-1730.   DOI
27 D.S. Kim, Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models, J. Korean Soc. Combust., 17(2) (2012) 17-23.
28 D.S. Kim, S.R. Kim, K.T. Kim, Thermoacoustic Analysis Considering Flame Location in a Gas Turbine Combustor, J. Korean Soc. Combust., 18(1) (2013) 1-6.   DOI
29 J.A. Kim, D.S. Kim, Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor, J. ILASS-Korea, 20(4) (2015) 241-246.   DOI
30 J.A Kim, M.G. Yoon, D.S. Kim, Combustion Stability Analysis Using Feedback Transfer Function, J. Korean Soc. Combust., 21(3) (2016) 1-10.   DOI
31 F.E. Marble, S.M. Candel, Acoustic Disturbance from Gas Non-Uniformities Convected through a Nozzle, J. Sound Vib., 55(2) (1977) 225-243.   DOI
32 T. Sattelmayer, Influence of the Combustor Aerodynamics on Combustion Instabilities from Equivalence Ratio Fluctuations, J. Eng. Gas Turb. Power, 125(1) (2003) 11-19.   DOI
33 J. Eckstein, T. Sattelmayer, Low-Order Modeling of Low-Frequency Combustion Instabilities in Aeroengines, J. Propul. Power, 22(2) (2006) 425-432.   DOI
34 E. Motheau, L. Selle, F. Nicoud, Accounting for Convective Effects in Zero Mach Number Thermoacoustic Models, J. Sound Vib., 333(1) (2014) 246-262.   DOI
35 N. Karimi, M.J. Brear, W.H. Moase, Acoustic and Disturbance Energy Analysis of a Flow with Heat Communication, J. Fluid Mech., 597 (2008) 67-89.   DOI
36 K. Wieczorek, Numerical Study of Mach Number Effects on Combustion Instability, Ph.D. Thesis, University of Montpellier, Montpellier, 2010.