• Title/Summary/Keyword: Acoustic Vibration

Search Result 1,628, Processing Time 0.023 seconds

PLL-type Position Control of Step Motors (스텝모터의 PLL 타입 위치제어)

  • Kim, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.69-77
    • /
    • 2012
  • We propose a PLL-type position control method for step motors. Our control method considerably improves the instability problem at rapid acceleration or deceleration, which is a major problem of conventional open loop control methods. Moreover, our controller reduces the steady state position error to zero and guarantees lower vibration and acoustic noise at high speed. Also, our controller can produce more torque at high speed, and hence it can extend the controllable velocity range. To demonstrate the practical significance of our control method, we present some simulation results for a commercially available step motor using Simulink.

STUDY ON THE OPTIMAL DESIGN OF A VEHICLE INTAKE SYSTEM USING THE BOOMING NOISE AND THE SOUND QUALITY EVALUATION INDEX

  • LEE J. K.;PARK Y. W.;CHAI J. B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, an index for the evaluation of a vehicle intake booming noise and intake sound quality were developed through a correlation analysis and a multiple factor regression analysis of objective measurement and subjective evaluation data. At first, an intake orifice noise was measured at the wide-open throttle test condition. And then, an acoustic transfer function between intake orifice noise and interior noise at the steady state condition was estimated. Simultaneously, subjective evaluation was carried out with a 10-scale score by 8 intake noise and vibration expert evaluators. Next, the correlation analysis between the psychoacoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding index for intake booming noise and sound quality are obtained from the multiple factor regression method. And, the optimal design of intake system was studied using the booming noise and the sound quality evaluation index for expectation performance of intake system. Conclusively, the optimal designing parameters of intake system from noise level and sound quality whose point of view were extracted by adapting comparative weighting between the booming noise and sound quality evaluation index, which optimized the process. These work could be represented guideline to system engineers, designers and test engineers about optimization procedure of system performance by considering both of noise level and sound quality.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

NEW ASPECTS OF MEASURING NOISE AND VIBRATION

  • Genuit, K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.796-801
    • /
    • 1994
  • Measuring noise, sound quality or acoustical comfort presents a difficult task for the acoustic engineer. Sound and noise are ultimately jugded by human beings acting as analysers. Regulations for determining noise levels are based on A-weighted SPL measurement performed with only one microphone. This method of measurement is usually specified when determining whether the ear can be physically damaged. Such a simple measurement procedure is not able to determine annoyance of sound events or sound quality in general. For some years investigations with binaural measurement analysis technique have shown new possibilities for the objective determination of sound quality. By using Artificial Head technology /1/, /2/ in conjunction with psychoacoustic evaluation algorithms - and taking into account binaural signal processing of human hearing, considerable progress regarding the analysis of sounds has been made. Because sound events often arise in a complex way, direct conclusions about components subjectively judged to be annoying with regard to their causes and transmission paths, can be drawn in a limited way only. A new procedure, complementing binaural measurement technology combined with mulit-channel measuements of acceleration sensor signals has been developed. This involves correlating signals influencing sound quality, analyzed by means of human hearing, with signals form different acceleration sensors fixed at different positions of the sound source. Now it is possible to recognize the source and the transmission way of those signals which have an influence on the annoyance of sound.

  • PDF

A Brief Review on Piezoelectrics-Based Paint Sensors (압전 기반 페인트 센서 기술 동향)

  • Hyoung-Su Han;Trang An Duong;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.433-441
    • /
    • 2023
  • Piezoelectric ceramics play an important role in electrical and electronic devices such as sensors, actuators, and microelectronic devices. However, traditional ceramics are difficult to be used in various process industries due to their high brittleness and low flexibility. Therefore, piezoelectric paint sensors have been designed for application to the curved surfaces of complicated structures. Furthermore, recently, significant attention has been focused on the development of paint sensors that can be used as structure health monitoring sensors for vibration, impact, and acoustic emission. Several studies have successfully demonstrated the possibility that smart paint sensors can take the place of traditional ceramic sensors. In this review, we briefly introduce the concept of the piezoelectric paint sensors and the expected application field as well as their preparation and history.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Development of a 1 MHz Megasonic for a Bare Wafer Cleaning (Bare Wafer 세정용 1 MHz 급 메가소닉 개발)

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.17-23
    • /
    • 2023
  • In semiconductor manufacturing processes, a cleaning process is important that can remove sub-micron particles. Conventional wet cleaning methods using chemical have limits in removing nano-particles. Thus, physical forces of a mechanical vibration up to 1 MHz frequency, was tried to aid in detaching them from the substrates. In this article, we developed a 1 MHz quartz megasonic for a bare wafer cleaning using finite element analysis. At first, a 1 MHz megasonic prototype was manufactured. Using the results, a main product which can improve a particle removal performance, was analyzed and designed. The maximum impedance frequency was 992 kHz, which agreed well with the experimental value of 986 kHz (0.6% error). Acoustic pressure distributions were measured, and the result showed that maximum / average was 400.0~432.4%, and standard deviation / average was 46.4~47.3%. Finally, submicron particles were deposited and cleaned for the assessment of the system performance. As a result, the particle removal efficiency (PRE) was proved to be 92% with 11 W power. Reflecting these results, the developed product might be used in the semiconductor cleaning process.

  • PDF

The fundamental frequency (f0) distribution of American speakers in a spontaneous speech corpus

  • Byunggon Yang
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2024
  • The fundamental frequency (f0), representing an acoustic measure of vocal fold vibration, serves as an indicator of the speaker's emotional state and language-specific pattern in daily conversations. This study aimed to examine the f0 distribution in an English corpus of spontaneous speech, establishing normative data for American speakers. The corpus involved 40 participants engaging in free discussions on daily activities and personal viewpoints. Using Praat, f0 values were collected filtering outliers after removing nonspeech sounds and interviewer voices. Statistical analyses were performed with R. Results indicated a median f0 value of 145 Hz for all the speakers. The f0 values for all speakers exhibited a right-skewed, pointy distribution within a frequency range of 216 Hz from 75 Hz to 339 Hz. The female f0 range was wider than that of males, with a median of 113 Hz for males and 181 Hz for females. This spontaneous speech corpus provides valuable insights for linguists into f0 variation among individuals or groups in a language. Further research is encouraged to develop analytical and statistical measures for establishing reliable f0 standards for the general population.

A Study of the Vibration Characteristics of a Haptic Vibrator for Horizontal and Vertical Magnetization (수평 및 수직 착자에 대한 햅틱 진동자의 진동특성에 관한 연구)

  • Ko, Dong Shin;Hur, Deog Jae;Park, Tae Won;Lee, Jai Hyuk;Lee, Sung Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.415-421
    • /
    • 2015
  • This paper describes the study of the design procedure for the step-by-step setup parameters and of the magnetizing method for performance and size reduction in the development of a haptic vibrator. The study of magnetization was accomplished by comparing the electromagnetic force in accordance with the horizontal and the vertical magnetization. The theoretical results indicated that the horizontal magnetization resulted in a better performance. The systematic design of a step-by-step procedure for establishing the design parameters was verified by testing the characteristics of the fabricated prototype product. The vibration response function analysis and electric field analysis were processed by decoupling of the analytical method, and these were determined to be in good agreement with the test results. The design parameters to contributing to the product reliability included the spring height, the welding position, and the coil position. The sensitivity of the electromagnetic field and the performance change were analyzed based on the design parameters. As a result, we proposed a design method to implement a reliability-based, high performance haptic vibrator.