• Title/Summary/Keyword: Acoustic Stiffness

검색결과 80건 처리시간 0.024초

셀롤로오즈 흡음재의 음향적 특성 평가 (Evaluations of the Acoustics Characteristics of Cellulose Absorbers)

  • 연준오;김경우;양관섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

보강재가 평판 진동 및 음향 특성에 미치는 영향 (Effects of Stiffeners on Vibro-acoustic Response of Rectangular Flat Plate)

  • 박정원;김동규;구만회;박준홍
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.622-628
    • /
    • 2011
  • The purpose of this study was to analyze the vibro-acoustic characteristics of a stiffened rectangular plate at high frequencies. The stiffeners attached along the plate surface were assumed to have rotational and translational stiffness and inertia. The harmonic response of the stiffened plate were predicted and compared using the Rayleigh-Ritz method with two different trial functions - polynomial and beam functions. The variation of the spatially averaged mean square velocity and the modal characteristics with the number of stiffeners were obtained. The use of the beam function ensured fast convergence which was essential for analyzing the high frequency vibration responses. Using the calculated modal characteristics and the Rayleigh-integral, the radiated sound power was predicted, and the effects of stiffeners were investigated. The proposed model can be applied to study optimal layout of stiffeners for minimal noise generation of the stiffened structures.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

제조시점에 따른 섬유상 흡음재의 물리적 특성 변화 (Changes in Physical Properties of Fibrous Sound Absorption Materials According to the Manufacturing Time)

  • 정영선;김경우
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.562-568
    • /
    • 2014
  • This study aimed to identify changes in the physical properties of artificial mineral-fiber materials used as building insulation that had been installed in the outer walls of buildings for a long time. To achieve this goal, glass fiber and rock wool were collected from outer walls in actual buildings and their acoustic and thermal performances were measured. These were compared with measurements from similar products manufactured recently. The results showed that old, used samples had a lower sound absorption coefficient compared to recently manufactured materials. The old samples also displayed increased compressibility compared to new materials. For example, the compressibility difference for glass wool was 7.32 mm. Old samples had a dynamic stiffness $1.28MN/m^3$ higher than new material samples. The thermal conductivity of both old and new samples increased within creasing temperature. They showed similar results at temperatures between 0 and $20^{\circ}C$.

Determination of Damage Thresholds and Acoustic Emission Characteristics of Pocheon Granite under Uniaxial Compression

  • Jang, Hyun-Sic;Jang, Bo-An
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.349-365
    • /
    • 2018
  • The strain and acoustic emission (AE) signals of Pocheon granite were measured during uniaxial compression tests to investigate microcrack formation and damage. Crack closure, initiation, and damage stresses of each sample were determined through an analysis of the crack volumetric strain and stiffness. The samples experienced four damage stages according to stress levels: stage 1 = crack closure stage; stage 2 = elastic stage; stage 3 = crack initiation stage; stage 4 = crack damage stage. At least 75% of all AE signals occurred in stages 3 and 4, and different AE parameters were detected in the four stress stages. Rise time, count, energy, and duration clearly showed a tendency to gradually increase with the damage stress stage. In particular, the rise time, energy, and duration increased by at least 95% in stage 4 as compared with stage 1. However, the maximum amplitude showed a smaller increase, and the average frequency decreased slightly at higher stages. These results indicate that as the degree of rock damage increases, the crack size grows larger. The crack types corresponding to the AE signals were determined using the relationship between RA (Rise time / Amplitude) values and average frequencies. Tension cracking was dominant in all stress stages. Shear cracking was rare in stages 1 and 2, but increased in stages 3 and 4. These results are consistent with previous studies that reported cracking begins after samples have already been damaged. Our study shows that the state of rock damage can be investigated solely through an analysis of AE parameters when rocks are under compressive stress. As such, this methodology is suitable for understanding and monitoring the stress state of bedrock.

구조-음향 연성계의 경계값 변화에 따른 방사음 변화 (A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System)

  • 김양한;서희선
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

IDENTIFICATION OF AIRWAY CHARACTERISTICS USING THE INPUT IMPEDANCE

  • Tung, V.X.;Jumaily, Al;Cheng, S.H.;Ro, S.H.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1037-1044
    • /
    • 2007
  • In an attempt to determine the correlations between the input acoustic impedance and the variations of the physical characteristics of the terminal elements, a five-lobe branched tube-network is mathematically developed and experimentally simulated using a lung simulator. The model takes into account some realistic conditions such as varying cross-sectional areas, flexible wall properties and branching. The effects of airway constrictions expressed by lobe stiffness variations on the impedance are determined for a range of frequencies up to 256 Hz. It is concluded that the developed model is capable of non-invasively predicting various physiological changes in the airway passages.

  • PDF

Preconditioning을 이용한 전속도 영역에 대한 압축성 유체유동해석 (A Time-Derivative Preconditioning Method for Compressible Flows at All Speeds)

  • 최윤호
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1840-1850
    • /
    • 1994
  • Enhancement of numerical algorithms for low speed compressible flow will be considered. Contemporary time-marching algorithm has been widely accepted and applied as the method of choice for transonic, supersonic and hypersonic flows. In the low Mach number regime, time-marching algorithms do not fare as well. When the velocity is small, eigenvalues of the system of compressible equations differ widely so that the system becomes very stiff and the convergence becomes very slow. This characteristic can lead to difficulties in computations of many practical engineering problems. In the present approach, the time-derivative preconditioning method will be used to control the eigenvalue stiffness and to extend computational capabilities over a wide range of flow conditions (from very low Mach number to supersonic flow). Computational capabilities of the above algorithm will be demonstrated through computation of a variety of practical engineering problems.

알루미늄 압출판의 동적 거동 예측을 위한 해석적 연구 (Study of dynamic behavior of aluminum extruded panels)

  • 이준헌;김대용;김범수;김관주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.729-733
    • /
    • 2012
  • Frame structures of High speed train are constructed from corrugated panel and aluminum extruded panel, which have high bending stiffness. Transmission loss of those panels, however, is less satisfactory than other panels with same mass per unit area. Therefore, this study predicted transmission loss of aluminum extruded panels using Finite element method. Specifically, we modeled acoustic cavity above a radiation surface and analyzed correlation between T-slot and transmission loss. Moreover, we examined the effect of boundary condition changes of the structure on transmission.

  • PDF

냉장고용 왕복동식 압축기의 가진력 규명 및 방사소음 예측 (Force Identification and Sound Prediction of a Reciprocating Compressor for a Refrigerator)

  • 김상태;전경진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.437-443
    • /
    • 2012
  • In this paper, the hybrid method to identify the exciting forces and radiated noise generated from the reciprocating compressor was presented. In order to identify the exciting force, both the acceleration data measured at the compressor shell and numerical finite element model for the full set of compressor were used simultaneously. Applying the identified exciting forces to the numerical model, the velocity responses of all nodes at the shell were predicted. Finally the radiated noises from the vibrating shell were predicted by using the direct boundary element acoustic analysis. For precise numerical modeling, the stiffness of rubber mounts and body springs were identified experimentally from the natural frequencies measured by impact testing. The error of over-all sound pressure level between predicted noise and measured noise was about 2.9 dB.