• Title/Summary/Keyword: Acoustic Sound

Search Result 1,624, Processing Time 0.026 seconds

Acoustic Characteristics of Sand Sediment with Circular Cylindrical Pores in Water (수중 원통형 다공성 모래퇴적물의 음향특성)

  • 윤석왕;이용주;노희설
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2002
  • Acoustic characteristics of water sediment were experimentally studied in laboratory. Water saturated sand sediment less than the grain size of 0.5 mm diameter is uniformly distributed in an acryl box (100 mm×100mm×42mm) with material thickness 1 mm. Pores in the acryl box are modeled as the structure of cylindrical pore tubes (diameter 3 mm and length 42 mm) filled with water. Cylindrical pore tubes have porosities 0%, 5%, 11%, 18% and 26 % controlled by the tube numbers. Transmitted acoustic waves through sand sediment specimen are analyzed as the functions of porosity and frequency from 0.3 MHz to 4 MHz. Transmitted acoustic waves are mixed with the first-kind wave from whole specimen and the second-kind wane from cylindrical pore tubes. For the center frequency 1 MHz, the first kind wave is dominant but for the center frequency 2.25 MHz, the second kind wave is dominant. In the case of the first-kind wave, as the porosity increases, the transmission coefficient decreases and the sound speed decreases to the sound speed of water. As the frequency increases, the transmission coefficient decreases but the sound speed is almost constant. In the case of the second-kind wave, as the porosity increases, the transmission coefficient increases but the sound speed is almost constant. The transmission coefficient and the sound speed are almost constant as a function of frequency.

Comparison of Acoustic Performance Depending on the Location of Sound Absorptive and Diffuser in Small Auditoriums Using 1/10 Scale Models (1/10 축소모형을 이용한 소공연장의 흡음재와 확산체의 적용위치에 따른 음향성능 비교)

  • Kim, Tae-Hee;Park, Chan-Jae;Park, Ji-Hoon;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.146-156
    • /
    • 2015
  • This study investigated how the location of sound absorptive materials and sound diffusers affects the acoustic performance of small auditoriums. It was conducted for a standard model established with the averaged dimension of 36 auditoriums which had opened since 2000 in Daehak-ro, Seoul. In this study, the installation area of finishing materials was calculated upon a back wall which had the smallest installation effective area of finishing materials. To analyze the changes of acoustic performance according to installation location of finishing materials, experiments were carried out using the 1/10 down scale models for 8 cases which were made by classifying the installation location of ceiling and side wall into the front, middle and rear part.The used acoustic parameters were reverberation time (RT), early decay time (EDT), clarity (C80), definition (D50) and speech transmission index (STI). In result, the index related to the amount of reverberant sound (RT, EDT) showed the great changes when evaluating it through just noticeable difference (JND), but the one related to clarity (C80, D50, STI) hardly indicated the changes. In case to obtain short reverberation time, it was most effective to control reverberation time through the side walls when installing sound absorptive and diffusive materials, and side wall front was the location which could get the shortest reverberation time.

A Study on the Torpedo Sonar Simulation for Combat System by Modeling Target and Noise (전투체계를 위한 표적 및 주변소음 모델링을 통한 어뢰소나 표적탐지 시뮬레이션 연구)

  • Kim, Yong;You, Hyun Seung;Kim, Seung Hwan;Ji, Jae Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.554-564
    • /
    • 2020
  • In environment of torpedo firing, underwater acoustic signal is generated by target and noise. Sound wave which is generated from acoustic signal is propagated by seawater and it is received through the sonar(sound navigation and ranging) system mounted on torpedo. In the ocean, acoustic signal or sound wave from target that is generated by the spread of broadband can be attenuated by ambient noise and can be lost by medium and environment. This research is designed to support teamwork training in Naval operations by constructing a simulation system that is more similar to the real-world conditions. This paper attempts to research the modeling of target detection and to develop the simulation of torpedo sonar(TOSO). In order to develop the realistic simulation, we researched the broadband sound modeling of target and noise source, the modeling of acoustic transmission loss by chemical component of seawater, and the modeling of signal attenuation by ambient noise environment which is approximated by experimental measurements in seawater surrounding the Korea Peninsular and by experience of Navy's actual torpedo firing. This research contributed to constructing more practical simulation of torpedo firing in real time and the results of this research were used to develop a teamwork training system for the Navy and their education.

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

Acoustic Loads Reduction of Composite Plates for Nose Fairing Structure (노즈 페어링 구조용 복합재 평판의 음향 하중 저감 특성)

  • 박순홍;공철원;장영순;이영무
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2004
  • Acoustic load generated by rocket propulsion system is one of major dynamic loads during lift-off phase so that it causes the structural failure and electronic malfunction of payloads. Acoustic loads can be greatly reduced by an appropriate acoustical design of nose faring structures. This paper deals with the acoustical design of the nose fairing structure for launch vehicle. It is well known that a honeycomb sandwich structure is a poor sound insulator because of its high specific stiffness. In this paper, the sound transmission characteristics of four kinds of honeycomb structures for noise fairing were investigated by means of numerical and experimental ways. In order to estimate transmission loss, infinite plate theory by Moore and Lyon and statistical energy analysis (SEA) method were used. The predicted results showed a good agreement with measured ones. These enabled us to determine a proper core material for nose fairing, which shows good sound insulation performance per weight.

Improving a Sound Localization Using 1/3-octave Band Pass Filter (1/3-옥타브 대역통과필터를 이용한 음상정위기법 성능 향상)

  • Hwang, Shin;Yang, Jin-Woo;Cheung, Wan-Sup;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.98-103
    • /
    • 2001
  • The binaural auditory system of human has the capability of differentiating the direction and distance of sound sources. This feature is well characterised in terms of the inter-aural intensity difference (IID), the inter-aural time difference (ITD) and/or the spectral shape difference (SSD) arising from the acoustic transfer of a sound source to the outer ears. This paper proposes an effective way of extracting the three sound perception factors (IID, ITD, SSD) from the head-related transfer functions (HRTF's) that depends on the direction and distance of the acoustic source from the listener. It includes the estimation method of the equivalent ITD and 1/3-octave band-based IID factors and their usage to locate a sound source in space. Subjective and objective tests were carried out to examine the effectiveness of the proposed methodology and its applicability to real sound systems. Those experimental results are illustrated in this paper.

  • PDF

Positional Estimation of Underwater Sound Source Using Nearfield Acoustic Holography (근접장 음향 홀로그래피에 의한 수중 음원의 위치 추정)

  • Yoon Jong-Rak;Kim Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.166-170
    • /
    • 2005
  • This paper describes the experimental study for the position estimation method of underwater sound source using the Nearfield Acoustic Holography. The result confirms that it can be used in the identification of underwater noise sources. The sound sources in the experimental work consists of 2 spherical projectors and the near-Held sound pressure is measured in the hologram plane. From the cross-power spectra of the measured data, the complex sound pressures on the hologram plane is derived and its spatial transformation gives sound fields in a source region. The obtained sound fields in a source region showed that the position of each sound source and their relative source strength are exactly estimated. In conclusion, this technique can be applied for estimation of each source position and its relative strength contribution for the underwater multiple sound sources.

Infrasound Wave Propagation Characteristics in Korea (국내 인프라사운드 전파특성 연구)

  • 제일영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

Application of the Internal Degree of Freedom to 3D FDLB Model and Simulations of Aero-Acoustic (3차원 차분격자볼츠만 모델에의 내부자유도 적용 및 유동소음 모사)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Kim, Jeong-Whan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.586-596
    • /
    • 2006
  • A 3-dimensional FDLB model with additional internal degree of freedom is applied for diatomic gases such as air, in which an additional distribution function is introduced. Direct simulations of aero-acoustic by using the applied model and scheme are presented. Speed of sound is correctly recovered. As typical examples, the Aeolian tone emitted by a circular column is successfully simulated even very low Mach number flow. Acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular column is captured. Full three-dimensional acoustic wave past a compact block like pentagon, furthermore, is also emitted in y direction as dipole like sound.

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.