• Title/Summary/Keyword: Acoustic Simulation

Search Result 811, Processing Time 0.026 seconds

Prediction of Powertrain Structure-borne Noise Using Hybrid Model (하이브리드 모델을 이용한 파워트레인 가진에 의한 구조 기인 소음 예측)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.12-22
    • /
    • 2007
  • This paper presents to predict the powertrain structure-borne noise which is primary resource of interior noise. As the first step, it is built up a hybrid powertrain model which is based on the real powertrain which is verified with static and dynamic properties. The methods for verifying are modal analysis and running vibration testing which are experimentally implemented. Based on the Hybrid powertrain component model, an initial predictive assembly model is simulated. As the second step, the characteristic transfer functions are measured that are dynamic stiffness of rubber mounts and vibro-acoustic transfer function based on the acoustic reciprocity. Several techniques utilizing special experimental devices have been proposed for this research. Finally, the structure-borne noise by powertrain will be predict and verify with dynamic simulation and experiment.

  • PDF

Simulation and Design of Surface Acoustic Wave Motor with Wide Bandwidth (IDT 구조변경을 통한 광대역 표면 탄성파 선형 모터의 시뮬레이션)

  • Kim, Jae-Geun;Lim, Soo-Cheol;Lee, Taek-Joo;Park, Na-Cheol;Park, Young-Pil;Park, Kyaung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.223-225
    • /
    • 2008
  • In this study. we propose a wide bandwidth surface acoustic wave (SAW) motor by design of Inter Digital Transducer (IDT). SAW motor has several benefits compared with preexisted actuator. But it has narrow bandwidth, which causes the lower performance. To widen the bandwidth, the change of IDT structure was proposed, which is slanted IDT and since function apodization. The frequency responses were compared original uniform IDT and changed IDT. And the time responses were compared original uniform IDT and changed IDT. As a result, the feasibility of wide bandwidth SAW motor was certified.

  • PDF

Performance Improvement of Stereo Acoustic Echo Canceller Using MINT Filtering (MINT 필터링에 의한 스테레오 음향 반향 제거기의 성능 향상)

  • 차경환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.42-46
    • /
    • 2002
  • In this paper, a new pre-processing algorithm is proposed to improve the performance of stereo acoustic echo canceller. The proposed algorithm has the improved performance by the estimation error reduction of filter coefficient using input signal which was reduced reverberation of room in the basis MINT (Mu1tip1e-input/output Inverse Theorem) filtering. For real stereo speech signal and real room impulse response the results of simulation, we showed that the proposed method could improved 3∼5 dB ERLE (Echo Return Loss Enhancement) regardless of NLMS (Normalized Least Mean Square) and Projection adaptive algorithm.

Improvement of the Accuracy of Supershort Baseline Acoustic Positioning System by Kalman Filter

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.6
    • /
    • pp.451-456
    • /
    • 1990
  • Underwater acoustic navigation and position fixing systems have been extensively used not only in surface position fixing but also in underwater position fixing. Tn recently, application of these systems has been in the field of underwater inspection of offshore platforms, where it is vital to track the position of an unmanned submersible or diver carrying underwater cameras and nondestructive testing equipment. But these systems are included the fixing errors as results of a signal with additive noise, the attenuation of sound and the interference effects due to multipath reflection and forward scattering. In this paper to improve the position fixing by the supershort baseline acoustic position system, a method to apply the Kalman filter to the fix of the system is proposed and the digital simulation under noise condition is conducted. The optimal positions by the Kalman filter are compared with original positions, and it is confirmed that the results of the pro-posed method are evidently more accurate.

  • PDF

Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method (하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석)

  • Seo, Jung-Hee;Moon, Young-J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

Characteristics of Low Frequency Aero-acoustic Noise Radiation for a Wind Turbine Generator of NREL Phase VI (NREL Phase VI 풍력발전기 저주파 소음방사 특성)

  • Mo, Jang-Oh;Kim, Byoung-Yun;Ryu, Byeng-Nam;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.504-507
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Calculated aerodynamic performances such as shaft torque and power are compared with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. If the distance by two times is changed from 32D to 64D toward the downstream region, sound pressure level is reduced by about 6.4dB.

  • PDF

Beam Analysis of Underwater Conformal Array by Using Cylindrical Acoustic Holography (원통면 음향 홀로그래피를 이용한 수중음향 곡면배열센서의 빔 해석)

  • Kwon, Hyu-Sang;Park, Seong-Chol;Seo, Hee-Seon;Shin, Gu-Kyun;Joh, Ghee-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.987-995
    • /
    • 2009
  • As an experimental technique to analyze the far-field characteristics of underwater cylindrical array sensors, cylindrical acoustic holography is studied. Inside an laboratory water tank, far-field directivity patterns as well as near-field source images are reconstructed from the measured hologram by hydrophone array. Approximate equation for far-field directivity estimation is derived based on stationary phase method. The simulation and experiment show well usefulness of the proposed method in application of underwater array sensors.

PZT5 spherical hydrophone simulation using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 활용한 PZT5 구형 수중 수파기 시뮬레이션)

  • Jarng, Soon-Suck
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.377-385
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acoustic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

A Neural Multiple LMS Based ANC System for Reducing Acoustic Noise of High-Speed Trains (신경회로망 다중 LMS 기법을 이용한 고속철도의 실내소음저감을 위한 ANC 시스템)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Nam, Hyun-Do
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.385-390
    • /
    • 2009
  • This paper presents a novel active noise control (ANC) system using least mean square (LMS) algorithm and neural network approach for decreasing acoustic noise signals inside high-speed trains. We construct a LMS framework as a nominal ANC system and additionally design an artificial single-layered perceptron model as an auxiliary ANC which is aimed to reduce real-time residuary noise due to its nonstationary and uncertain nature. Parameter vector of the hybrid ANC is determined through online estimation to realize an adaptive ANC configuration by means of the steepest descent algorithm. We achieve simulation experiment to demonstrate the proposed ANC system employing realistic acoustic noise signals measured in Korea Train eXpress (KTX).

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.565-582
    • /
    • 2008
  • This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.