• 제목/요약/키워드: Acoustic Signal

검색결과 1,384건 처리시간 0.088초

A Study on the Design of Inaudible Acoustic Signal in Acoustic Communications and Positioning System (음향 통신 및 위치측정 시스템에서의 비가청 음향 신호 설계에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제17권2호
    • /
    • pp.191-197
    • /
    • 2017
  • According to the ubiquitous usage of smartphone, so many smartphone applications have been developed, and especially data communications and position measurement technologies without additional equipments have been developed using acoustic signal. But there is a limitation to select the frequency of the acoustic signal due to the smartphone hardware, and there is non-linearity in the electronic circuits in a sound generation devices, the audible sound generated from the speaker is not avoidable. And it causes critical difficulty to the commercial system deployment. In this paper, a simulation technique to calculate the power of the audible acoustic signal by human is applied to several types of acoustic signals to evaluate the loudness. These could be referred when the acoustic communications or positioning systems are designed, for the purposed of inaudible sounding to human.

Double-talk Control using Blind Signal Separation based on Geometric Concept in Acoustic Echo Canceller (음향반향제거기에서 기하학적 개념의 BSS를 이용한 동시통화 제어)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제12권3호
    • /
    • pp.419-426
    • /
    • 2017
  • This paper describes an acoustic echo canceller with double-talk using BSS(: Blind Signal Separation) based on the geometric concept. The acoustic echo canceller may be deteriorated or diverged during the double-talk period. So we use the blind signal separation to detect the double talking by separating the near-end speech signal from the mixed microphone signal. In the closed reverberation environment, the blind signal separation extracts the near-end signal from unknown signals with the transformation and rotation based on the geometric concept. By this method, the acoustic echo canceller operates irrespective of double-talking. We verified performances of the proposed acoustic echo canceller by computer simulations. The results show that the acoustic echo canceller with this algorithm detects the double-talk periods thoroughly, and operates stably in the normal state without diverging of coefficients after ending the double-talking.

A Study on the Acoustic Detection of Partial Discharges in Insulation Oil (유중 부분방전의 음향검출에 관한 연구)

  • Kil, Gyung-Suk;Kim, Sung-Wook;Park, Dae-Won;Kim, Sun-Jae;Song, Jae-Man
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제23권1호
    • /
    • pp.53-60
    • /
    • 2010
  • This paper dealt with the acoustic detection of partial discharge (PD) in insulation oil for insulation diagnostics of oil immersed transformers. Electrode systems such as needle to plane, plane to plane, and floating were fabricated to simulate some defects in transformers. A wide band acoustic emission(AE) sensor with the frequency ranges of 100 kHz~1 MHz and a narrow band AE sensor with the resonant frequency of 140 kHz were used in the experiment. Also, a decoupler and an amplifier were designed to detect and amplify the acoustic signal only. The decoupler separates acoustic signal from DC source without any distortion, and the amplifier has the gain of 40 dB in frequency ranges of 11 kHz~4 MHz. In the experiment, frequency components and propagation characteristics of acoustic signal were analyzed, and an algorithm of positioning of PD occurrence by the time difference of arrival was proposed. From the results, the frequency components of the acoustic signal exist from 50 kHz to 200 kHz and the positioning error of PD calculated by three AE sensors was within 1%.

A judgment algorithm of the acoustic signal for the automatic defective manufactures detection in press process (음향방출 신호를 이용한 프레스 불량품 자동 판단 알고리즘)

  • Kim, Dong-Hun;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제9권3호
    • /
    • pp.76-82
    • /
    • 2010
  • A laborer always watched a process of production carefully but defective manufactures were inspected after press process. These inspections made a waste of human power and defective manufactures could make a serious damage of press mold. Therefore, AE(Acoustic Emission) system was introduced to prevention of the damage of the press molds, to a real time detection of defective manufactures and to save human power. AE system was introduced to solve this problem which is a detecting defective manufacture on real time and to prevent the damage of the press mold. In this research we get acoustic emission signal in accordance with weight and processing method of press by using AE sensor, Preamplifier, AE board signal board which occurs press processing and it analyzed various signal through using CMD8 software on the time. From the result, we found that the intensity and shape of the signal were changed according to the weight and processing type of the press. By using this special algorithm, it can judge the acoustic signal which occurs from press on real time.

A Study on the Acoustic Baffle to Reduce Ghost Target According to Structure behind Cylindrical Array Sensor (원통형 배열센서 후면 구조물에 의해 발생하는 허위 표적 감소를 위한 음향 배플 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제25권6호
    • /
    • pp.440-446
    • /
    • 2015
  • Acoustic signal is emitted from a vessel and received by a cylindrical array sensor at some distance from the vessel. Acoustic signal is the source for a cylindrical array sensor which is designed to detect the acoustic signal. Cylindrical array sensors seldom have an ideal hydrodynamic shape and are not sufficiently robust to survive without some protection and they are normally housed in a sonar dome. Reflected signals by some structure inside a sonar dome make unwanted signals. Therefore, an acoustic baffle is used to minimize unwanted signals. The performance of the acoustic baffles can be determined from the acoustic numerical analysis at the design stage. In this study, finite element method was used to analyze the acoustic field around the cylindrical array sensor and baffle effects. The baffle performance can be defined the echo reduction. To show the baffle performance, the specimens were made for pulse tube test and echo reductions were measured during the test. In this paper, the effect of echo reduction of the acoustic baffle was discussed.

Underwater Acoustic Source Localization based on the Probabilistic Estimation of Direction Angle (확률적 방향각 추정에 기반한 수중 음원의 위치 인식 기법)

  • Choi, Jinwoo;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • 제9권4호
    • /
    • pp.206-215
    • /
    • 2014
  • Acoustic signal is crucial for the autonomous navigation of underwater vehicles. For this purpose, this paper presents a method of acoustic source localization. The proposed method is based on the probabilistic estimation of time delay of acoustic signals received by two hydrophones. Using Bayesian update process, the proposed method can provide reliable estimation of direction angle of the acoustic source. The acquired direction information is used to estimate the location of the acoustic source. By accumulating direction information from various vehicle locations, the acoustic source localization is achieved using extended Kalman filter. The proposed method can provide a reliable estimation of the direction and location of the acoustic source, even under for a noisy acoustic signal. Experimental results demonstrate the performance of the proposed acoustic source localization method in a real sea environment.

Target Emphasis Algorithm in Image for Underwater Acoustic Signal Using Weighted Map (가중치 맵을 이용한 수중 음향 신호 영상에서의 표적 강화 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제11권3호
    • /
    • pp.203-208
    • /
    • 2010
  • In this paper, we convert underwater acoustic signal made by sonar system into digital image. We propose the algorithm that detects target candidate and emphasizes information of target introducing image processing technique for the digital image. The process detecting underwater target estimates background noise in underwater acoustic signal changing irregularly, recomposes it. and eliminates background from original image. Therefore, it generates initial target group. Also, it generates weighted map through proceeding doppler information, ensures information for target candidate through filtering using weighted map for image eliminated background noise, and decides the target candidate area in the single frame. In this paper, we verified that proposed algorithm almost had eliminated the noise generated irregularly in underwater acoustic signal made by simulation, targets had been displayed more surely in the image of underwater acoustic signal through filtering and process of target detection.

Leak Detection Technique of Pressure Vessel Using Acoustic Emission Signal (음향방출 신호를 이용한 압력용기의 누설 검사기법 개발)

  • 이성재;정연식;강명창;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제13권4호
    • /
    • pp.95-99
    • /
    • 2004
  • In this study, the leak detection technique of pressure vessel by using acoustic emission(AE) signal is suggested experimentally. The leak of pressure vessel is located at the welding line due to welding defects. we measured the AE signal using Rl5I sensor, and examined the AE parameters in leak condition. It is investigated that the mean value of AE signal is dependent on leak source location. So the absolute mean value of AE signal is adopted as dominant AE parameter. We proposed leak detection algorithm using AE signal mean value for monitoring the leak source location.

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

Detection of Partial Discharge Acoustic Signal Using the Optical Fiber Interferometric Sensor (광섬유 간섭계 센서를 이용한 부분방전 음압 측정)

  • 이종길;박윤석;이준호
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권7호
    • /
    • pp.614-623
    • /
    • 2002
  • In this paper, it was manufactured an interferometric optical fiber sensor and measured partial discharge acoustic signal caused by defect of power facilities such as power cables, transformers and gas insulation. Acrylic and aluminium mandrels wound with fiber-optic were chosen as optical fiber sensor, Sagnac and Mach-Zehnder interferometers were chosen to detect discharge acoustic signals. The two fiber optic interferometers were identified by using the PZT. Discharge experimentation set in the discharge imitation cell in oil tank and the discharge phenomena was generated. Based on the experimental result, to detect the discharge acoustic signal, Sagnac interferometer can detect stably the acoustic signal than the Mach-Zehnder interferometer. It is shown that Sagnac optical fiber sensor can detect the discharge acoustic signals effectively.