• Title/Summary/Keyword: Acoustic Signal

Search Result 1,387, Processing Time 0.024 seconds

Evaluation of AE Signal caused by the Fatigue Crack (피로균열시 발생되는 AE신호 분석)

  • Kim, Jae-Gu;Gu, Dong-Sik;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.572-577
    • /
    • 2011
  • The acoustic emission (AE) technique is a well-known non-destructive test technique, both in research and for industrial applications. It is mainly used to monitor the onset of cracking processes in materials and components. Predicting and preventing the crack phenomenon has attracted the attention of many researchers and has continued to provide a large incentive for the use of condition monitoring techniques to detect the earliest stages of cracks. In this research, goal is in grasping features of AE signal caused by crack growth. The envelope analysis with discrete wavelet transform (DWT) is used to find the characteristic of AE signal. To estimate feature of divided into three by crack length, the time waveform and the power spectrum were generated by the raw signals and the transferred signal processed by envelope analysis with DWT.

  • PDF

AE Signal Characteristic Analysis caused by Crack Growth (균열 진전에 따라 발생되는 AE신호 특성 분석)

  • Kim, W.C.;Kim, J.G.;Gu, D.S.;Kim, H.J.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.41-46
    • /
    • 2010
  • Acoustic emission (AE) technique is a well-known non-destructive test technique. Fatigue crack growth test was performed using SM53C to check up the AE signal occurred by crack growth, so AE system was used to detect the crack signal. Features calculated by the AE signals were analyzed to evaluate the steps divided the crack growth into three. The steps, initiation, growth and breaking, were separated by velocity of the crack growth. Time waveform and power spectrum were created by the AE signal of each one of the steps and compared. In the feature domains, it was found that AE values changed rapidly as the velocity of the crack increasing.

The Acoustic Emission Energy Analysis of Subambient Pressure Tri-Pad Slider

  • Pan Galina;Hwang Pyung;Xuan Wu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.139-142
    • /
    • 2004
  • The object of the present work is the acoustic emission energy analysis of subambient pressure tri-pad slider. Head/disk interaction during start/stop and constant speed were detected by using acoustic emission (AE) test system The frequency spectrum analysis is performed using the AE signal obtained during the head/disk interaction Natural frequency analysis was performed using Ansys program. Acoustic emission energy was calculated for the slider modes.

  • PDF

The first attempt of utilization of a wideband autonomous acoustic system and its general knowledge on analyzing the wideband acoustic data (광대역 자율 음향 시스템의 국내 최초 활용 시도와 광대역 음향 데이터 분석 방안)

  • KANG, Myounghee;CHO, Youn-Hyoung;LA, Hyoung sul;SON, Wuju;YUN, Hyeju;ADRIANUS, Aldwin;AN, Young-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.130-140
    • /
    • 2022
  • Recently, wideband acoustic technology has been introduced and started to be used in fisheries acoustic surveys in various waters worldwide. Wideband acoustic data provides high vertical resolution, high signal-to-noise ratio and continuous frequency characteristics over a wide frequency range for species identification. In this study, the main characteristics of wideband acoustic systems were elaborated, and a general methodology for wideband acoustic data analysis was presented using data collected in frequency modulation mode for the first time in Republic of Korea. In particular, this study described the data recording method using the mission planner of the wideband autonomous acoustic system, wideband acoustic data signal processing, calibration and the wideband frequency response graph. Since wideband acoustic systems are currently installed on many training and research vessels, it is expected that the results of this study can be used as basic knowledge for fisheries acoustic research using the state-of-the-art system.

Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology (AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출)

  • 정의식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

Lateral direction acoustic detection of fiber optic sensor array using Fabry-Perot (Fabry-Perot을 이용한 두 개의 광섬유 센서배열의 횡방향 음압 감지 특성)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.342-345
    • /
    • 2005
  • To detect external acoustic signal, fiber optic sensor array using Fabry-Perot interferometer which had benefit of minimize and light-weight was used. The sensor head has 1cm in length, total length of fiber is 9.5cm, and the sensor supported at both ends, simply. External sound applied in lateral direction and detected two signals were compared each other. It was confirmed that the Fabry-Perot interferometric sensor array detected acoustic signal, effectively.

  • PDF

Acoustic Echo Cancellation using Time-Frequency Masking and Higher-order Statistics (시간-주파수 마스킹과 고차 신호 통계를 이용한 음향 반향신호 제거)

  • Kim, Kyoung-Jae;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.629-631
    • /
    • 2007
  • In hands-free full-duplex communication systems, acoustic signals picked up by the microphones can be mixed with echo signals as well as noises, which may result in poor performance of the corresponding communication system. Also, the system performance may decrease further if the reverberation occurs since it is harder to estimate the impulse response of the demixing system. For blind source separation (BSS) in such cases, a time-frequency masking approach can be employed to separate undesired echo signals and noises, but, permutation ambiguities also should be solved for the echo cancellation. In this paper, we propose a new acoustic echo cancellation (AEC) approach utilizing the time-frequency masking and higher-order statistics, whereby a desired signal selection, based on coherence and third-order statistics (i.e., kurtosis), is introduced along with output signal normalization. Simulation results demonstrate that the proposed approach yields better echo and noise cancellation performances than the conventional AEC approaches.

Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code (상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

A Development of Robust Underwater Sound Signal Recognition Algorithm for Acoustic Releaser (Acoustic releaser 제어를 위한 강인한 수중음향신호 인식 알고리즘의 개발)

  • 김영진;허경무
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.33-38
    • /
    • 2004
  • In this paper we presents a underwater sound recognition algorithm by which we can identify the sound signal without the influence of disturbances due to underwater environmental changes. The proposed method provides a means suitable for acoustic releaser which require low power dissipation and long-time underwater operation. We demonstrate its ability of securing stability and fast sound recognition through both numerical and experimental methods.

Constructing a Noise-Robust Speech Recognition System using Acoustic and Visual Information (청각 및 시가 정보를 이용한 강인한 음성 인식 시스템의 구현)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.719-725
    • /
    • 2007
  • In this paper, we present an audio-visual speech recognition system for noise-robust human-computer interaction. Unlike usual speech recognition systems, our system utilizes the visual signal containing speakers' lip movements along with the acoustic signal to obtain robust speech recognition performance against environmental noise. The procedures of acoustic speech processing, visual speech processing, and audio-visual integration are described in detail. Experimental results demonstrate the constructed system significantly enhances the recognition performance in noisy circumstances compared to acoustic-only recognition by using the complementary nature of the two signals.