• Title/Summary/Keyword: Acoustic Radiation Pattern

Search Result 37, Processing Time 0.025 seconds

Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake (비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구)

  • Park, Yong-Hwan;Kim, Min-Woo;Lee, Kyu-Ho;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

Analysis of the Radiation Pattern of Conformal Array Transducers (곡면 배열 트랜스듀서의 방사 특성 해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.431-438
    • /
    • 2010
  • The radiation pattern of conformal transducers installed on a curved surface is likely to be complicated depending on the array pattern on the curved surface. In this research, the acoustic sources constituting a conformal transducer are arrayed in equi-angle, equi-interval, and geodesic dome forms, and the radiation pattern function of each of the array geometries has been derived, and therewith the radiation pattern has been analyzed for each array geometry. Based on the analysis result, we have determined the equi-interval array geometry that provides the widest beam width with the lowest side lobe level among the three array geometries. Results of the present work are expected to be utilized to the design of conformal transducer structures.

An Analysis of the Acoustic Radiation Characteristics from the Acoustic Transducer (압전세라믹스를 이용한 음향트랜스듀서의 음향방사특성 해석)

  • 노현택;고영준;박재성;남효덕;장호경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.703-706
    • /
    • 2000
  • The acoustic characteristics radiated from the acoustic transducer with metal-piezoceramic laminated circular plate were simulated. The Vibrational modes of metal-piezoceramic laminated circular plates were calculated by using the finite element method. After meshing the inside closed boundary of the acoustic transducer, the pressure gradients and the isotaric lines were calculated for the various frequencies. It has been observed that the characteristics of the sound pressure calculated for the various frequencies. Also, the directivity patterns and the sound pressure radiated from the acoustic transducer were calculated by 2-dimensional analysis.

  • PDF

Error Investigation in use of Near-field Acoustic Holography in the Underwater Environment of Reflected Wave (수중반사파 환경에서의 근접음장 홀로그래피 적용에 대한 오차 고찰)

  • Yi, Jongju;Kang, Myunghwan;Han, Seungjin;Jeong, Hyunjoo;Bae, Sooryong;Jung, Woojin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.969-976
    • /
    • 2014
  • Nowadays, it is required for naval ships to estimate 3D underwater radiated noise pattern in all direction at peak frequencies of hull vibration for the reduction of being detected and doing the effective operation. For this purpose, the numerical method has to be developed to calculate 3D underwater radiated noise pattern with experimental data. It is very difficult to obtain the experimental data for the real ship. Alternative to get the experimental results is to use NAH(near-field acoustic holography) in acoustic tank with experimental model. Application of NAH in acoustic tank for the experimental model needs some investigation of reflection wave from the wall of the acoustic tank and unmeasured zone of the experimental model due to the supporting structure for it. In this study, the effect of reflection wave in the acoustic tank and unmeasured area of the experimental model when using the NAH was investigated with experiment and numerical model. From these, it is known for the error due to reflection wave can be reduced when the distance between the measurement plane and source is being shorten. Also, unmeasured area of the experimental model gives rise to some error in the estimation of the far-field acoustic pressure.

Acoustic Characteristics Analysis of Cylindrical Array for the Directional and Omni-directional mode Using the Boundary Element Method (경계요소법을 이용한 원통형 배열센서의 지향성/무지향성 모드에 대한 음향특성해석)

  • Lee, Jung-Min;Seo, Hee-Seon;Cho, Yo-Han;Baek, Kwang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.922-927
    • /
    • 2009
  • The transducers used in active sonar on surface ships are packed in a specific geometry in the array drum in order to meet the requirements such as the source level, directional beam pattern, etc. This paper describes the acoustic characteristics of the cylindrical array which is based on a 64 vertical staves arrangement, each stave composed 5 independent transducers. Firstly, the single transducer on the rigid baffle in the water is analyzed with the Finite Element Method. From the result of the FE analysis nodal velocities on the radiation surface is calculated and used with the boundary conditions of the transducers mounted on the array drum. Then the acoustic pressure is calculated in the field points using the Boundary Element Method and the other acoustic informations, the source level, beam pattern, near field and far-field distance, were acquired.

A Analysis on the Estimation Method of the 3D Underwater Radiation Noise Pattern of Cylindrical Structure with the Underwater Experiments (수중실험을 통한 원통구조물의 3차원 수중방사소음 패턴 산출기법 분석)

  • Yi, Jongju;Kang, Myunghwan;Han, Seungjin;Jeong, Hyunjoo;Oh, Junseok;Bae, Sooryong;Jung, Woojin;Seo, Young Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.907-918
    • /
    • 2014
  • In this study for the prediction of 3D underwater radiated noise pattern, a comparison between the proposed method(DHIE, Discrete Helmholtz Integral Equation) and the 3D underwater radiated noise calculation results using the measurement of near-field acoustic pressure data is performed. The near-field acoustic pressure in water is measured for the calculation of the far-field radiated noise pattern and the far-field acoustic power. Also the vibration field of the underwater structure is measured in simultaneously. Using the total far-field acoustic power and the vibration field on the surface of the structure, the proposed method(DHIE) can predict the underwater radiated noise pattern of the far-field The predicted results show the reasonable agreement within about 5dB comparing with the experiment result.

A Study on the Source Mechanism of Micro-crack by Radiation Pattern (방사형식에 의한 미소균열의 파괴메커니즘에 관한 연구)

  • Lee Sang-Eun
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.179-187
    • /
    • 2006
  • Two specimens of mortar containing artificial slit and Geochang granite containing the straight notch were selected to be used in this research. Source mechanism of micro-crack by radiation pattern based on dislocation the-ory was estimated by the first motion of longitudinal wave and spatial distribution between the location of transducers for monitoring acoustic emission and source coordinates determined by the application of the least square method. Result of analysis showed that the orientation of dislocation surfaces due to shear dislocation and tensile dislocation squares considerably with crack direction visually observed. The ultimate goal of this study is to provide fundamental information for source mechanism of micro-crack within materials.

Intracavitary Ultrasound Hyperthermia Applicators for Gynecological Cancer

  • Lee, Rena J. .;Suh, Hyun-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.53-53
    • /
    • 2003
  • For evaluating the feasibility of treating recurrent lesions in the vaginal cuff and cervix by hyperthermia, ultrasound applicators were designed, constructed, and characterized. For the treatment A half-cylindrical transducer Cd=1cm, length=lcm) and cylindrical transducer (d=2.5cm, length= 1.5cm) were used to construct ovoid type and cylindrical applicators. For the ovoid type applicator, each element was operated at 1.5MHz and characterized by measuring transducer efficiency and acoustic power distribution. Thermocouple probes were used to measure the temperature rise in phantom. The element sizes used in this study were selected to be comparable for high dose rate brachytherapy colpostat applicator. Each element was powered separately to achieve a desired temperature pattern in a target. The acoustic output power as a function of applied electric power of the element 1 and 2 was linear over this 1 to 40 W range and efficiencies were 32.2${\pm}$3.4% and 46.2${\pm}$0.8%, respectively. The temperature measurements in phantom showed that 6$^{\circ}C$ temperature rise was achieved at 2 cm from the applicator surface. As a conclusion, the ability of the ultrasound colpostat applicator to be used for hyperthermia was demonstrated by measuring acoustic output power, ultrasound field distribution, and temperature rise in phantom. Based on the characteristics of this applicator, it has the potential to be useful for inducing hyperthermnia to the vaginal cuff in clinic.

  • PDF

Investigation of the Acoustic Performance of Music Halls Using Measured Radiation Characteristics of the Korean Traditional Musical Instruments (국악기의 음향방사특성에 따른 국악당의 음향성능조사)

  • Haan Chan-Hoon;Lee Wangu;Jeong Cheol-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.469-480
    • /
    • 2005
  • There have been always some difficulties in target setting and conditioning of acoustic performances or the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. As the 2nd experiment succeeding the previous study[1], the radiation characteristics of eight typical Korean traditional musical sources were investigated if precision. The selected musical sources were Geomungo, Haegeum (string), Piri, Taepyeongso (woodwind), Buk, Kwaengguari, Jing (drum), and male Pansori Chang (vocal Performance). The results show that the directivity pattern of each instrument is different and has their own directivity characteristics. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. In order to investigate the acoustical characteristics of the instruments depending on the spatial variation four different shapes of halls were introduced including rectangular, fan. horse-shoe and geometrical shapes. Room acoustical parameters such as RT, SPL, C80, LF, STI were calculated at each type or hall. As the results, It was found that the rectangular hall has the most high clarity. lateral energy and STI values among low shapes of halls. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.

A study of noise source identification on plate excited structure borne sound by acoustic intensity method (음향인텐시티법에 의한 고체진동 가진판의 소음원 검출에 관한 연구)

  • 오재응;김상헌;홍동표;이찬홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-55
    • /
    • 1986
  • In the studies of noise reduction, it is important to know the generation mechanism of noise in order to identify the noise source. The relation between the structural vibration and the radiated sound is very complex and so this paper deals with a simplified radiation model that was originally developed as a verification tool for the acoustic intensity measurement procedure. As the first step for the identification of the noise source, this study deals with the noise evaluation by measuring sound pressure. On the next step, the acoustic radiational pattern is determined by the acoustic intensity method and this paper established that the acoustic intensity method is effective on the detection of noise. In the study, furthermore, the method could be used to predict the change in the sound radiational characteristics with the attachment of absorber and could be used in determining the attachment position.

  • PDF