• 제목/요약/키워드: Acoustic Oscillation

검색결과 114건 처리시간 0.022초

메탄올 액적 화염의 음향파 가진에 의한 재점화 (Reignition of Methanol Droplet Flames Under Acoustic Pressure Oscillation)

  • 김홍집;손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.114-122
    • /
    • 1999
  • Reignition as special cases of acoustic pressure responses of flame are numerically studied by employing methanol droplet flame as a laminar flamelet. Quasi-steady flame responses occur in the range of small amplitude, low frequency oscillation. Reignition phenomena can occur when, by increasing the frequency of large amplitude acoustic pressure, the magnitude of characteristic acoustic time is the same order of that of characteristic reaction time of flames. And more increasing of amplitude of acoustic pressure induces the direct extinction of flame. Flame can sustain its own intensity even under the steady extinction temperature in case of high frequency acoustic oscillation, and this tendency is remarkable with increasing frequency. Reignition regime with respect to amplitude and frequency of acoustic pressure doesn't exist in low frequency($10^2$ Hz, in this study), but broadens with frequency of acoustic pressure.

음파가 가해진 액적의 진동에 관한 동적 특성 (Hydrodynamic characteristics of a pendant dmp by acoustic wave)

  • 문종훈;김호영;강병하
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.76-79
    • /
    • 2004
  • Dynamic oscillation motion of a pendant drop has been Investigated experimentally when acoustic wave is applied. This problem is of particular interest in the understanding of transport phenomena, accompanied by liquid drop. In this experiment, pendant drop was made to oscillate by inducing the acoustic wave and the subsequent drop motion was recorded by a high-speed camera. The results obtained indicate that liquid drop hanging on the flat surface has resonant frequencies on each shape oscillation modes. It is also found that exists the swing mode of oscillation on the pendant drop.

  • PDF

음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구 (An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave)

  • 강병하;문종훈;김호영
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

Experimental Studies on Self-Oscillation of a Swirl Coaxial Injector

  • Kim, Dongjun;Wonho Jeong;Jihyuk Im;Youngbin Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.228-233
    • /
    • 2004
  • The spray and acoustic characteristics by the self-oscillation of a swirl coaxial injector were experimentally studied. The self-oscillation of a swirl coaxial injector is defined as pressure and flowrate oscillations by a time-delayed feedback between liquid and gas phase and has strong influences on atomization and mixing processes. Hence the occurrence and effect of the self-oscillation are measured using shadow photography technique, acoustic test and PDPA. The occurrence of self-oscillation largely depends on the injection conditions, such as pressure drop of liquid phase and relative momentum ratio. From the experimental results, self-oscillation occurs when the momentum of gas phase is enough large and the smaller the pressure drop of liquid phase is, the better self-oscillation occurs at the same momentum ratio. The self-oscillation is also affected by injector geometries, increasing the recess length results in the expansion of self-oscillation region and the increase of sound pressure level. The self-oscillation of a swirl coaxial injector accompanies a high intensity scream and this scream may provide harmful disturbances to combustion processes. Self-oscillation leads to strong changes in the drop size distribution and smoothly varies the slope of radial SMD distribution.

  • PDF

관형 연소기의 열음향학적 특성에 관한 연구 (Characteristics of Thermoacoustic Oscillation in Ducted Flame Burner)

  • 조상연;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.621-626
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat additions is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. In addition, the effect of wall temperature is presented. The results suggest that the frequency of max. oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters. On the other hand, the wall temperature distribution has much strong effects on the oscillation, even creates different mode of acoustic resonance.

  • PDF

유체 공급 배관내 압력진동 감쇠에 미치는 오리피스의 음향학적 효과 (Acoustic Effect of an Orifice on Suppression of Pressure Oscillation in a Fluid Feeding Line)

  • 손채훈;김철희
    • 한국항공우주학회지
    • /
    • 제34권4호
    • /
    • pp.11-16
    • /
    • 2006
  • 유체 공급배관내의 압력진동을 감쇠할 수 있는 방법으로 배관내에 오리피스를 설치하는 방법을 채택하여, 그 압력진동 감쇠효과를 수치해석을 통해 조사하였다. 본 연구에서는, 압력진동의 진폭이 작다는 가정에 기초하여 오리피스의 음향학적 감쇠효과에 초점을 맞추었다. 오리피스의 위치에 따른 계산 결과로부터 압력진동의 마디, 즉 속도진동의 배가 되는 위치에 오리피스를 설치할 때 가장 효과적으로 압력 진동이 감쇠되었다. 이에 반해서, 오리피스를 압력진동의 배에 설치한 경우에는 오리피스의 설치 효과가 아주 미약하였다. 오리피스의 유로 봉쇄율이 증가함에 따라 감쇠효과는 단조적으로 증가하였고, 오리피스의 두께가 증가할수록 공진성을 약화시켜 감쇠효과가 크게 나타났다. 또한, 직경이 작은 배관에서 감쇠 효과가 더 크게 나타났다.

평균유동이 있는 유체 공급배관내 오리피스의 압력섭동 감쇠 특성 (Pressure-Oscillation Damping Characteristics of an Orifice in a Fluid Feeding Line with Mean Flow)

  • 이태영;김철진;손채훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.359-362
    • /
    • 2009
  • 유체 공급 배관 내에 오리피스를 설치하여, 압력진동의 감쇠효과를 수치해석 및 실험을 통하여 조사하였다. 압력진동이 작다는 가정에 기초하여 오리피스의 음향학적 감쇠 효과를 실험적으로 확인 하였으며, 평균 유동이 있을 경우 관찰되는 감쇠 특성을 수치적으로 조사하였다. 오리피스의 위치에 따른 압력진동의 마디, 즉 속도 진동의 배가 되는 위치에 오리피스를 설치할 때 가장 효과적인 압력 진동이 감쇠 되었다. 배관 내 평균 유속이 있을 경우 공진주파수가 감소하였고, 이에 따라 최적 감쇠 효과를 갖는 오리피의의 위치도 변화함을 알 수 있었다.

  • PDF

표면연소기의 연소진동음에 관한 연구 (A Study on Combustion-Driven Oscillations in a Surface Burner)

  • 한희갑;권영필
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

기주의 열음향진동에 관한 연구 (A Study on the Thermoacoustic Oscillation of an Air Column)

  • 권영필;이병호
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.253-261
    • /
    • 1987
  • 본 논문에서는 이러한 점들을 보완하여 Fig.1에 도시한 Rijke 관에서 나선형 가열기에 의한 음향력의 발생량을 계산하고 기주진동을 일으키는데 필요한 가열량을 계산하고 기주진동을 일으키는데 필요한 가열량을 구하였다. 이론을 뒷받침하기 위 하여 실험을 하고 결과를 비교 검토하였다.

표면 연소기의 연소진동음의 발생조건 (Onset condition of the combustion-driven sound in a surface burner)

  • 권영필;이주원;이동훈
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF