• Title/Summary/Keyword: Acoustic Natural Frequency

Search Result 109, Processing Time 0.027 seconds

A Study on the Modal Characteristics of the Vibration-Acoustic Coupled System (진동-음향 연성계의 모드특성에 대한 연구)

  • Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.239-245
    • /
    • 1996
  • Modal parameters determine the frequency response characteristics of vibration system or acoustic system. When the two systems are fully coupled, however, coupling changes the vibrational and acoustic model parameters into those of the coupled system. In this case, it is very difficult to obtain the modified model parameters and response characteristics. In this paper, coupling effect is analytically investigated on the natural frequency, mode and frequency response characteristics. The result can be applied to understand and to design the frequency response characteristics of the vehicle passenger compartment.

  • PDF

Experiments of Combustion Vibration in the Pilot Furnace for Fossil Power Plant under Combustion Test (I) (화력 발전용 시험연소로의 연소시험 중의 연소진동 실험(I))

  • Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • This paper presents results of test for combustion vibration in the pilot furnace for fossil power plant under combustion test. We measured static pressure variation in the pilot furnace together with air and fuel flow. From test results, it shows that vibration magnitude is affected by air and fuel flow. Also, a finite element analysis using a commercial S/W is performed to calculate acoustic mode of the pilot furnace. These results show that dominant frequency occurred is related to acoustic natural frequency of furnace. After this, it needs to be studied the relation between dominant frequency of combustion vibration and air flow rate.

  • PDF

Vibration and Acoustic Noise Reduction Method of SRM Using Auxiliary Winding (보조권선 활용에 의한 SRM의 진동 및 소음 저감 방안)

  • 정태욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.548-556
    • /
    • 2003
  • Switched reluctance motor(SRM) has simple magnetic structure, and needs simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase. In the vibration and acoustic noise characteristics. the considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural frequency of mechanical structure. This radial vibration force is generated by abrupt change of radial magnetic force in the phase commutation region. This paper studied about simple electromagnetic structure of SRM using auxiliary compensating winding for the reduction of noise and vibration. This auxiliary winding is coupled with all phase windings electromagnetically and absorb and transfer magnetic energy variation from phase to other phase. By this interaction of phase windings and compensating winding can reduce abrupt radial force change and vibration and acoustic noise. In this paper the improvement effect is examined by the test of prototype machine.

Numerical Analysis of Heavy-weight Impact Noise for Apartment Units Considering Acoustic Mode (음향모드를 고려한 공동주택 중량충격음 소음해석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho;Im, Ju-Hyeuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.676-684
    • /
    • 2012
  • Numerical analysis was performed to investigate the heavy-weight impact noise of apartment houses. The FEM is practical method for prediction of low-frequency indoor noise. The results of numerical analysis, the shape of the acoustic modes in room-2 are similar to that of acoustic pressure field at the fundamental frequency of acoustic modes. And the acoustic pressure was amplified at the natural frequency of the acoustic modes and structural modes. The numerical analysis result of sound pressure level at 63 Hz and 125 Hz octave-band center frequency are similar to the test results, but at 250 Hz and 500 Hz have some errors. Considering most of bang-machine force spectrum exists below 100 Hz, the noise at 250 Hz and 500 Hz are not important for heavy-weight impact noise. Thus, the FEM numerical analysis method for heavy-weight impact noise can apply to estimate heavy-weight impact noise for various building systems.

Development of Acoustic Resonance Evaluation System to Detect the Welding Defects (용접 불량 검사를 위한 음향공진 검사 장치 개발)

  • Yeom, Woo Jung;Kim, Jin Young;Hong, Yeon Chan;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.371-376
    • /
    • 2019
  • We have developed an acoustic resonance inspection system to inspect the welding defects in the mechanical parts fabricated using friction stir welding method. The inspection system was consisted of a DAQ board, a microphone sensor, an impact hammer, and controlled by a PC software. The system was developed to collect and analyze the sound signal generated by hitting the sample with an impact hammer to determine whether it is defective. In this study, 100% welded good samples were compared with 95%, 90%, and 85% welded samples, respectively. The variation of the completeness in welding did not affect the visual appearance in the samples. As a result of analyzing the natural frequencies of the good samples, the five natural frequency peaks were identified. In the case of the defective samples, the frequency change was observed. The welding failure detection time was fast enough to be only 0.7 seconds. Employing our welding defect inspection system to the actual industrial field will maximize the efficiency of quality inspection and thus improve the productivity.

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

Reduce Acoustic Noise in SRM Using RPWM (RPWMdp 의한 SRM의 소음 저감)

  • 임영철;김광헌;나석환;김현덕;안정훈
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.189-192
    • /
    • 1998
  • For the practical using the SRM by domestic application, we must of all have solution to the noise and the vibration. This paper presents the acoustic noise emitted from the SRM. The emitted noise it particularly strong when the frequency of deformation coincides with that of a natural mechanical resonance of the stator. To reduce the emit acoustical noise varying the switching frequency randomly. We will consist of SRM control system by using DSP, and confirm the effects of the noise reduction

  • PDF

Acoustic Mode Analysis to Identify Cavity Noise of Scroll Compressor (스크롤 압축기의 공동 소음 규명을 위한 음향모드 분석)

  • Kim, Seung-Yup;Lee, Dong-Soo;Suh, Jeong-Hwan;Heo, Dae-Nyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.83-88
    • /
    • 2004
  • Acoustic modes of internal region of 4-hp scroll compressor are identified by measuring transfer functions between a reference and 84 measuring points. The corresponding acoustic mode-shapes and natural frequencies were calculated by analysis software SYSNOISE. There exist two clearly distinguishable dipole modes of vertical and horizontal direction and a single quadrupole mode in the frequency region of interest. It shows that the natural frequencies of the identified modes are linearly sensitive to suction pressure (Ps) but relatively in sensitive to discharge pressure (Pd) in operating condition.

  • PDF