• Title/Summary/Keyword: Acoustic Model

Search Result 1,267, Processing Time 0.032 seconds

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Vocal Tract Modeling with Unfixed Sectionlength Acoustic Tubes(USLAT) (비고정 구간 길이 음향 튜브를 이용한 성도 모델링)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1126-1130
    • /
    • 2010
  • Speech production can be viewed as a filtering operation in which a sound source excites a vocal tract filter. The vocal tract is modeled as a chain of cylinders of varying cross-sectional area in linear prediction acoustic tube modeling. In this modeling the most common implementation assumes equal length of tube sections. Therefore, to model complex vocal tract shapes, a large number of tube sections are needed. This paper proposes a new vocal tract model with unfixed sectionlengths, which uses the reduced lattice filter for modeling the vocal tract. This model transforms the lattice filter to reduced structure and the Burg algorithm to modified version. When the conventional and the proposed models are implemented with the same order of linear prediction analysis, the proposed model can produce more accurate results than the conventional one. To implement a system within similar accuracy level, it may be possible to reduce the stages of the lattice filter structure. The proposed model produces the more similar vocal tract shape than the conventional one.

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

Underwater Acoustic Environment and Low Frequency Acoustic Transmission in the Sub-Polar Front Region of the East Sea (동해 아극전선 해역의 수중음향환경 및 저주파 음파전달 양상)

  • Lim, Se-Han;Ryu, Gun-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • To investigate low frequency acoustic transmissions in the Sub-Polar Front(SPF) of the East Sea, numerical experiments are conducted with Range dependent Acoustic Model(RAM) using Circulation Research of the East Asian Marginal Seas(CREAMS) data and Autonomous Profiling Explorer(APEX)) data. Significant seasonal variations of sea water properties are existed across the Sub-Polar Front(SPF) region from the north and the south. The model results show that Transmission Loss(TL) decrease(about 20dB) with ideal front in the warm region whereas TL increase(about 25dB) with ideal front in the cold region. Regardless of season(both in summer and winter), when the sound source is located in the cold region of the SPF, the model results show weak TL, compared to the case of the source in the warm region(Maximum difference of TL reaches 28dB). This difference between the cases when the source is located in the cold region and the warm region, is accounted for from the different vertical profiles of sound speed in both regions.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Effect of Multi-Swirl Injector on Acoustic Damping in Model Combustion Chamber (모형 연소실에 장착된 다중 스월인젝터의 음향학적 감쇠 효과)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.198-203
    • /
    • 2007
  • The aim of this study is to suppress the high-frequency combustion instability by acoustic absorption through swirl injector with variable air core length. In the previous study, acoustic damping effects on air core (length, shape, volume) and location of the injector in a model chamber were investigated. Through previous results, our study has advanced to the effect of tuned multi-injectors. From the experimental data, it is proved that increasing of numbers of injectors mounted each anti-node point can increase acoustic damping effect. Also, when tuned injectors at 1L, 1T, 1L1T modes simultaneously are installed each anti-node point of model chamber, damping effect of tuned injectors with multi modes is well agreed with it of tuned injectors with single mode.

  • PDF

Estimation of Effects of Underwater Acoustic Channel Capacity Due to the Bubbles in the High Frequency Near the Coastal Area

  • Zhou, Guoqing;Shim, Tae-Bo;Kim, Young-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.69-76
    • /
    • 2008
  • Measurements of bubble size and distribution in the surface layer of the sea, wind speed, and variation of ocean environments were made continually over a four-day period in an experiment conducted in the South Sea of Korea during 17-20 September 2007. Theoretical background of bubble population model indicates that bubble population is a function of the depth, range and wind speed and bubble effects on sound speed shows that sound speed varies with frequency. Observational evidence exhibited that the middle size bubble population fit the model very well, however, smaller ones can not follow the model probably due to their short lifetime. Meanwhile, there is also a hysteresis effect of void fraction. Observational evidence also indicates that strong changes in sound speed are produced by the presence of swarms of micro bubbles especially from 7 kHz to 50 kHz, and calculation results are consistent with the measured data in the high frequency band, but inconsistent in the low frequency band. Based on the measurements of the sound speed and high frequency transmission configuration in the bubble layer, we present an estimation of underwater acoustic channel capacity in the bubble layer.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Comparison of Analysis Results According to Heterogeneous or Homogeneous Model for CT-based Focused Ultrasound Simulation (CT 영상 기반 집속 초음파 시뮬레이션 모델의 불균질 물성과 균질 물성에 따른 모델 분석 결과 비교)

  • Hyeon, Seo;Eun-Hee, Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.369-374
    • /
    • 2022
  • Purpose: Focused ultrasound is an emerging technology for treating the brain locally in a noninvasive manner. In this study, we have investigated the influence of skull properties on simulating transcranial pressure field. Methods: A 3D computational model of transcranial focused ultrasound was constructed using female and male CT data to solve for intracranial pressure. For heterogeneous model, the acoustic properties were calculated from CT Hounsfield units based on a porosity. The homogeneous model assigned constant acoustic properties for the single-layered skull. Results: A computational model was validated against empirical data. The homogeneous models were then compared with the heterogeneous model, resulted in 10.87% and 7.19% differences in peak pressure for female and male models respectively. For the focal volume, homogeneous model demonstrated more than 94% overlap compared with the heterogeneous model. Conclusion: Homogeneous model can be constructed using MR images that are commonly used for the segmentation of the skull. We propose the possibility of the homogeneous model for the simulating transcranial pressure field owing to comparable focal volume between homogeneous model and heterogeneous model.