• 제목/요약/키워드: Acoustic Model

검색결과 1,271건 처리시간 0.031초

바이오센서 개발을 위한 음향 브래그 반사층을 가지는 체적탄성파 공진기의 공진특성 분석 (Analysis of Resonance Characteristics of Bulk Acoustic Resonator with Acoustic Bragg Reflector for Biosensor Development)

  • 김희영;김기복;하태훈;김용일;이진민;김만수
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.260-268
    • /
    • 2009
  • As a basic study to develop a high sensitive biosensor using film bulk acoustic resonator, the mathematical model for analyzing the resonance characteristics of bulk acoustic resonator with acoustic Bragg reflectors was investigated. The simulation results due to the number of acoustic Bragg reflectors with low and high acoustic impedance materials were compared with the experimental results for 1, 2.25 and 5 MHz of PZT based bulk acoustic resonators with various acoustic Bragg reflectors. At the fabricated bulk acoustic resonator with an odd number of acoustic Bragg reflectors, low and high acoustic impedance materials in sequence under the bottom electrode showed better resonance characteristics than even number of acoustic Bragg reflectors. The changes of resonance frequencies due to the increase of number of acoustic Bragg reflectors by simulation and experiment, respectively showed approximately similar tendency but some differences in input impedance between the experiment and simulation were found. The derived mathematical model for describing the resonance characteristics of the bulk acoustic resonator with acoustic Bragg reflector will be available for analyzing the design parameters for development of biosensor using bulk acoustic resonator.

다목적 실용위성 2호 구조-열모델의 음향 환경 시험 (High Intensity Acoustic Test for KOMPSAT-2 STM)

  • 김홍배;문상무;김영기;우성현;이상설;김성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.862-866
    • /
    • 2002
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. To qualify vibro-acoustic environment during its flight, High Intensity Acoustic Test was performed for KOMPSAT-2(Korea Multi-Purpose SATellite) STM(Structural Thermal Model). This paper presents the detailed description on the high intensity acoustic test for KOMPSAT-2. Additionally the test results was compared with the analysis ones, which were estimated with 3-D SEA(Statistical Energy Analysis) model.

  • PDF

저자원 환경의 음성인식을 위한 자기 주의를 활용한 음향 모델 학습 (Acoustic model training using self-attention for low-resource speech recognition)

  • 박호성;김지환
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.483-489
    • /
    • 2020
  • 본 논문에서는 저자원 환경의 음성인식에서 음향 모델의 성능을 높이기 위한 음향 모델 학습 방법을 제안한다. 저자원 환경이란, 음향 모델에서 100시간 미만의 학습 자료를 사용한 환경을 말한다. 저자원 환경의 음성인식에서는 음향 모델이 유사한 발음들을 잘 구분하지 못하는 문제가 발생한다. 예를 들면, 파열음 /d/와 /t/, 파열음 /g/와 /k/, 파찰음 /z/와 /ch/ 등의 발음은 저자원 환경에서 잘 구분하지 못한다. 자기 주의 메커니즘은 깊은 신경망 모델로부터 출력된 벡터에 대해 가중치를 부여하며, 이를 통해 저자원 환경에서 발생할 수 있는 유사한 발음 오류 문제를 해결한다. 음향 모델에서 좋은 성능을 보이는 Time Delay Neural Network(TDNN)과 Output gate Projected Gated Recurrent Unit(OPGRU)의 혼합 모델에 자기 주의 기반 학습 방법을 적용했을 때, 51.6 h 분량의 학습 자료를 사용한 한국어 음향 모델에 대하여 단어 오류율 기준 5.98 %의 성능을 보여 기존 기술 대비 0.74 %의 절대적 성능 개선을 보였다.

Horn의 음향 모델링 연구 - 음향 혼의 해석 및 설계 - (A Study on the Acoustic Modeling of Horn - Analysis and Design of Acoustic Horn -)

  • 사종성;박석태
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.537-548
    • /
    • 2014
  • In this paper, horn loudspeaker modeling was suggested, investigated and verified through comparison of test results and simulation ones based on input electrical impedance curves and acoustic sensitivity ones. First, Thiele Small parameters of horn driver were identified by using pseudo loudspeaker model concept and verified in case of both closed and open horndriver. Second, cone-shaped horn models were investigated and compared with input acoustic impedance curves for real horn(cone angle $6.6^{\circ}$) and short horn(cone angle $27.9^{\circ}$). It showed that Leach model for cone horn was well described to test results, which were electrical impedance and acoustic sensitivity, compared to Lemaitre one. To represent horn system model good approximation in wide frequency range, mass correction filter and lowpass filter were adopted and consequently showed good fitted to test results.

스치는 유동과 관통 유동의 영향을 고려한 천공 요소의 음향 임피던스 모델 (Acoustic impedance model of perforated elements with both grazing and bias flow)

  • 이성현;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1372-1375
    • /
    • 2006
  • The simplified impedance model which can consider a combined flow condition was suggested. Although the strength and position of the shear layer cannot be obtained by a linear sum of two separate contributions when both flows occur together, it was simply assumed that the impedance under the combined flow follows from summing the separate flow impedance. To validate the simplified impedance model, acoustic properties of a concentric resonator was predicted and measured. The predicted transmission loss using the simplified model shows reasonable agreements with measurements. One can find that the simplified impedance model obtained by the superposition of the separate flow impedances can be adjusted to predict the acoustic properties of a concentric resonator.

  • PDF

네트워크 모델링 기법을 이용한 환형 가스터빈 연소기(GT24)에서의 음향장 해석 (Acoustic Analysis in an Annular Gas Turbine Combustor (GT24) Network Modeling Approach)

  • 장재우;노현구;김대식
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.119-125
    • /
    • 2023
  • In this research, a network model was developed to predict combustion instability in an annular gas turbine combustor (GT24) for power generation. The model consisted of various acoustic elements such as several ducts and area changes which could represent a real combustor with a complex geometry, applied mass, momentum, and energy equations to each element. In addition, a one-dimensional network model through a cylindrical coordinate system has been proposed to predict various acoustic modes. As a result of the analysis, the key resonant frequencies such as longitudinal, circumferential, and complex modes were derived from the EV combustor of GT24, and the reliability of the current model was verified through comparison with the 3D Helmholtz solver.

음향해석과 다구치법에 의한 스피커 설계 (Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method)

  • 김준태;김정호;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구 (Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis)

  • 김태정;강성종;서정범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

음향계의 해석을 위한 부분구조합성법의 적용 (Application of Substructure Synthesis Method for Analysis of Acoustic System)

  • 오재응;고상철;조용구
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델 (A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid)

  • 신동호;문하준;김명남;조진호
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.