• Title/Summary/Keyword: Acoustic Inspection

Search Result 103, Processing Time 0.028 seconds

Acoustic Impulse Method with Neural Network for Detection of Cracks in Eggshell (음향충격법과 인공신경망에 의한 파란 검출)

  • 최완규;조한근;백진하;장영창
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.621-628
    • /
    • 1998
  • In order to develop an inspection algorithm for an automatic eggshell inspection system, acoustic impulse response with neural network method was studied. An improved error backpropagation algorithm was selected as a loaming rule of neural network, and three layer network was chosen for the neural network architecture. Acoustic signals in time domain and theirs power spectrum were studied as the input to the neural network. The classification feasibility and success rate were investigated in terms of statistical analysis and neural network approach. As a result, the success rate was 95% with the statistical model having five independent variables. Among the neural network models studied, the power spectrum of acoustic signal as the input with 64 input neurons and the two impact data showed the success rate of 95.5% which was slightly higher than of statistical analysis.

  • PDF

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device

  • Jeon, E.S.;Kim, W.T.;Kim, I.S.;Park, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.207-211
    • /
    • 2010
  • In this paper, the fluid AID(acoustic inspection device) was developed to measure SOS(speed of sound) since fluids used in most of industrial fields have different properties and its equipment is highly expensive. From AID developed, it is intended to get potentially the capability to distinguish the kind of fluid using the measurement by the SOS at various fields. In order to measure the sound speed of specific fluids, the measurement system and ultrasonic sensors are composed. The fluid used in the experimental work are soybean oil, glycerin, diesel oil and the error of time difference due to the container wall is extracted for preliminary experiment. As results, the variations of sound speed according to the temperature change of target fluid were analyzed and the polynomial equations were proposed.

A Durability Study on the Acoustic Baffle for Underwater Environment (수중 환경용 음향 배플의 내구성 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae;Kang, Myeng Hwan;Jung, Woo Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.449-457
    • /
    • 2016
  • Cylindrical array sensor of a surface ship to detect an enemy is normally installed in the sonar dome. Reflected signals by some structures inside the sonar dome make unwanted signals. To minimize unwanted signals, acoustic baffles are used. Acoustic baffles are hard to install and replace, so the durability of acoustic baffles is an important design parameter. To verify the durability of acoustic baffle, accelerated aging tests according to temperature and pressure were performed. Acoustic baffle specimens were made and they are tested the visual and the performance (echo reduction and transmission loss) inspection before and after aging. After the inspection, the effect of accelerated aging of the acoustic baffles were discussed.

Application of Acoustic Emission Technique for Bridge Cable Monitoring (교량 케이블 적용 강연선 모니터링을 위한 음향방출 기법 검토)

  • Kim, Ga-Young;Seo, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • This paper presents the assessment of 7-wire strand monitoring using acoustic emission technique for bridges. 7-wire strand is widely used construction materials to provide additional tensile force to bridges. PSC (PreStressed Concrete) bridge and cable-stayed bridge are representatives for such cases. However, as the bridge aging progresses recently, corrosion problems of strand are emerging. For this reason, various NDT (Non-Destructive Test) methods for cable inspection are being studied and applied to the field. One of the NDT methods, acoustic emission technique, is known as an effective technique to detect cable damage and breakage. In this study, to evaluate the applicability of acoustic emission technique to bridges, acoustic emission signals according to damage of the strand were acquired and analyzed by tensile test. Moreover, The optimal AE sensor type was selected for field application. As a result, it is considered that the acoustic emission technique will be able to detect corrosion breakage and signs of rupture.

Development of Acoustic Resonance Evaluation System to Detect the Welding Defects (용접 불량 검사를 위한 음향공진 검사 장치 개발)

  • Yeom, Woo Jung;Kim, Jin Young;Hong, Yeon Chan;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.371-376
    • /
    • 2019
  • We have developed an acoustic resonance inspection system to inspect the welding defects in the mechanical parts fabricated using friction stir welding method. The inspection system was consisted of a DAQ board, a microphone sensor, an impact hammer, and controlled by a PC software. The system was developed to collect and analyze the sound signal generated by hitting the sample with an impact hammer to determine whether it is defective. In this study, 100% welded good samples were compared with 95%, 90%, and 85% welded samples, respectively. The variation of the completeness in welding did not affect the visual appearance in the samples. As a result of analyzing the natural frequencies of the good samples, the five natural frequency peaks were identified. In the case of the defective samples, the frequency change was observed. The welding failure detection time was fast enough to be only 0.7 seconds. Employing our welding defect inspection system to the actual industrial field will maximize the efficiency of quality inspection and thus improve the productivity.

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

A Study on the Fluid Leakage Evaluation for Power Plant Valve Using Acoustic Imaging Technique (음향 영상화기법을 이용한 발전용 밸브 유체누설평가 연구)

  • Lee, S G.;Lee, S.K.;Kim, D.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Image processing has provided powerful techniques to extract from the acoustic signals the desired information on evaluation for leakage existence, leakage rate, and searching for leakage location, etc. The imagery NDE data available can add additional and significant dimension in nondestructive evaluation(NDE) information and thus for exploiting in applications. To extract such information the use of advanced image processing techniques is much needed. In recent years, there has been much increased use of acoustic signal image processing techniques in acoustic NDE. This approach will increase the efficiency of inspection procedures and reduce inspection time. In this paper we are concerned only with This paper is concerned mainly with the use of advanced image processing techniques in valve leakage detection and advanced image restoration and enhancement methods, which attempt to evaluate promptly by a visualization method the acoustic sources while detecting the valve leakage.

Crack Detection in Eggshell by Acoustic Responses (음향반응에 의한 계란의 크랙검출에 관한 연구)

  • 조한근;최완규;백진하
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 1998
  • A nondestructive quality inspection technique using acoustic impulse response method was developed for eggshell inspection. An experimental system was built to generate the impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seal a microphone with preamplifier, and a DSP board installed on Personal Computer. A simple algorithm .was developed for crack detection. Using the developed system with algorithm, crack detection ability was evaluated and the error rate to estimate the normal egg as cracked was found to be 4% and the error rate to estimate the cracked egg as normal was also found to be 4%. This system could be adopted in industry with some modification.

  • PDF

On-line Detection of Cracks in Eggshell (계란 크랙의 온라인 검출)

  • 최완규;조한근;백진하;장영창;연광석;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This study was conducted to develop an automatic egg inspection system for detecting creaked eggs based on acoustic impulse response. This system includes a sound generator, a sound sensor with signal conditioner, and a computer. The sound generator that hit the sharp of the dull edges of an egg was constructed with a ceramic ball pendulum attached to a rotary type solenoid. The signal conditioner included a pre-amplifier and a digital signal processing (DSP) board. The parameters for distinguishing cracked and normal eggs were the area, the geometric centroid and the resonance frequency of power spectrum of the acoustic signal generated. An algorithm for on-line detection of the continuous transferring eggs was developed. The performance tests resulted with 91% success rate to separate cracked and normal eggs at the rate of 1 second per an egg.

  • PDF

Factors Affecting Acoustic Responses of Egg Shell (난각의 음향반응에 영향을 주는 인자)

  • 조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • A nondestructive quality inspection technique using acoustic impulse response method was studied to investigate the feasibility of egg shell inspection. An experimental system was built to generate impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seat, a microphone with preamplifier, and a digital oscilloscope connected to Personal Computer by RS-232C interface. The factors such as impulse generating method, egg holding method, and sensor location were evaluated by analyzing the power spectrum density of the measured signal. The results obtained are summarized as follows : 1. From the sampled eggs, the proper conditions for detecting damaged eggs were found as followings; ceramic for the impact ball material, rubber for egg seat material, 20 degrees for an impact angle of pendulum, 10mm for the distance between egg and sensor, the sharp side for impacting part, and 180 degrees for the location of sensor. 2. Examination of the Fourier transformed analysis in beth normal and damaged eggs revealed that those factors such as the resonant frequency, a number of peak frequencies and the magnitude of power spectrum were important to detect damaged eggs.

  • PDF