• Title/Summary/Keyword: Acoustic Emission 음향방출

Search Result 552, Processing Time 0.024 seconds

Nondestructive Testing and Applications for Integrity Assessment of Power Plant Facilities by Acoustic Emission Technology - Part 1 : The Theory of Acoustic Emission Technology(I) - (발전설비 건전성평가를 위한 음향방출 비파괴검사 적용기술 - 제1편 : 음향방출 비파괴검사기술 이론(I) -)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.5-13
    • /
    • 2005
  • Acoustic emission(AE) is defined as the transient elastic waves thar are generated by the rapid release of energy. The advantage of AE is that very early crack growth can be detected well before a highly stressed component may fail. At present, an exact diagnosis is the most reliable means for determining the soundness of structures during power plant operations. AE monitoring has been applied successfully in power plants to determine mechanical problems, pressure vessel integrity and external valves leaks, vacuum leaks, the onset of cavitation in pumps and valves, the presence of flow(or no flow) in piping and heat exchange equipment, etc. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper introduces the methods of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in power plant.

  • PDF

A study on the acoustic emission characteristics of laminated composite structures (복합재료 적층 구조물의 음향방출 특성 연구)

  • 박재성;김광수;이호성
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2003
  • This paper studied the AE(acoustic emission) characteristics of the laminated composite structures. The composite stiffened panels under the compressive loading emitted various AE signals when they buckled or changed the buckling modes. In addition, the failure initiated and propagation generated a lot of complex signals. From the continuous signal generation. we identified when the failures initiated and whether they propagated or not. The single lap joint of laminated plates under tensional load also generated AE signals when bonding region failed. The first failure occurrence and its propagation are monitored by generated AE signals. The characteristics of AE signals used in this analysis are cumulative hits, hit distribution, peak frequency of generated AE waveform and amplitude of signals. The analysis of AE signals shows that continuous increment of cumulative hits can be regarded as damage propagation and three dominant peak frequencies can correspond to typical failure modes in the laminated composites.

Three Dimensional FE Analysis of Acoustic Emission of Composite Plate (복합재료 파손 시 발생하는 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung Jo
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, damage induced acoustic emission in the composite plate in numerically simulated by using the three dimensional finite element method and explicit time integration. Acoustic source is modeled by equivalent volume source. To verify the proposed method, dynamic displacements due to the elastic wave are compared with the experiment when the fiber is broken in the single fiber embedded isotropic plate. For the laminated composite plates, the results are compared between homogenized model and DNS approach which models fibers and matrix separately. To capture high frequencies in the elastic wave, small time step size and a large number of meshes are required. The parallel computing technology is introduced to solve a large scale problem efficiently.

Signal Characteristics of Acoustic Emission from Angiosperm and Gymnosperm by the Water Stress (물 스트레스를 받는 속씨식물과 겉씨식물에서 검출된 음향방출의 신호특성)

  • Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.480-487
    • /
    • 2003
  • To improve environmental control in various plants, signal characteristics of plants have been studied by a nondestructive technique. In this paper, the acoustic emission (AE) from plants was analyzed for water stress dependency. AE signals were taken from gymnosperm and angiosperm. AE sensor detected AE signals from the plant stem underneath the plant surface below the sensor. AE hit-event counts in daytime were more than those in night time, and it was found that the daily hit counts pattern was strongly affected by the water stress in the plant. frequency bands of AE signals from the angiosperm was different from those from the gymnosperm. Frequency bands of AE in outdoor condition were in accord with those in indoor having similar conditions.

A Statistical. Properties of Tensile Behaviors of STS304 Stainless Steel at Elevated Temperature and the Acoustic Emission (STS304 스테인리스강의 고온 인장거동의 통계적 특성과 음향방출)

  • Kwak, Myung-Kyu;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.68-74
    • /
    • 2002
  • The tensile tests to identify the statistical tensile properties and the acoustic emission characteristics were conducted for STS304 stainless steel at $600^{\circ}C,\;700^{\circ}C$. From tensile tests performed by constant cross head speed controls with 1mm/min, rates at each elevated temperature, the scatters were observed in tensile strength, reduction of area, elongation and the acoustic emission parameters. The effect of temperature on the scatter of tensile behavior was larger at $700^{\circ}C$. The distributions of tensile properties was well followed in 3-parameter Weibull. The AE counts and energy of the $700^{\circ}C$ specimens were smaller than the $600^{\circ}C$.

  • PDF

Detection and Analysis of Acoustic Emission Signal at the Epicenter on the Circular Glass Plate During Pencil Land Fracture (연필심 파괴시 유리원판의 진앙점에서 음향방출 신호의 검출 및 해석)

  • Lee, Jong-Gyu;Jang, Ji-Won;Park, Jeong-Man
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • Theoretical evaluations of the vertical displacement at the epicenter on the circular glass plate have been carried out in the case of the unit point loading(1 dyne force strength) with the Heaviside step-function time dependency. Acoustic emission signals generated during pencil lead($\Phi$=0.5mm, HB) fracture on the soda-lime glass($\Phi$=22cm, thickness=2.8cm) were observed by the optical Michelson interferometer with the stabilized circuit, and then the source function of the observed acoustic emission signals was analyzed by the deconvolution method. The source function of acoustic emission during pencil lead fracture had a 'dip' of~0.7$\mu$sec duration time at the front portion and a step function of~0.5$\mu$sec rise time with a force strength of~4.5N.

  • PDF

A Study of the Development of PC-Based Source Location System using Acoustic Emission Technique (음향방출기법을 이용한 PC기반 위치표정시스템 개발에 관한 연구)

  • Lee, M.R.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2003
  • Acoustic emission (AE) technique has been applied to not only mechanical property testing but also on-line monitoring of the el)tire structure or a limit zone only. Although several AE devices have already been developed for the on-line monitoring, the price of these systems is very high and it is difficult for the field to apply yet. In this study, wc developed a specially designed PC-based source location system using the A/D board. The source location technique is very important to identify the source, such as crack, leak detection. However, since the AE waveforms obtained from transducers are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform (WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transients components effectively In this study, the analyses of the AE signals are presented by employing the WT analyses. AE results are compared the PC-based source location system using A/D board with the commercial AE system.

Acoustic Emission Testing in Cylindrical-Type Storage Tank (원통형 저장탱크의 음향방출시험)

  • Kwon Jeong Rock;Lyu Geun Jun;Lee Tae Hee;Kim Jee Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.9-15
    • /
    • 2000
  • In order to investigate the structural defects of a cylindrical-type toluene storage tank, we carried out the acoustic emissions. The storage tank was manufactured with high strength steel in 1978 and its's first and second courses from bottom were entirely repaired, recently. Acoustic emissions were monitored with real time according to load sequences in the $75{\~}84\%$ level range of maximum allowable load. Our results show a non-genuine acoustic emissions as well as a genuine characteristics. The pseudo emissions considered as valve noises were transiently occurred on shut-off processes of inlet valve regardless of water loading. The acoustic emission events occurred during water filling phase were estimated due to defects, and in the $75{\~}84\%$ test load level no evidences of defect growth were observed. Those defects were ascertained as weld cracks and porosities through the post radiography testing conducted near active sensors.

  • PDF

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.