• 제목/요약/키워드: Acoustic Characteristics

검색결과 2,195건 처리시간 0.029초

타격조건에 따른 수박의 음파특성 (Acoustic Characteristics of Watermelon According to Impact Conditions)

  • 최동수;최규홍;이영희;이강진;김만수
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.67-76
    • /
    • 2002
  • This study was conducted to investigate the effects of impact conditions on the acoustic characteristics of a watermelon. The study was crucial to develop a device for nondestructive internal quality evaluation of a watermelon by an acoustic impulse response method. An impact device was constructed with a pendulum to hit the watermelon, a microphone to detect the acoustic impulse responses, and a digital oscilloscope and computer to store and analyze the data. The selected samples were Guemcheon cultivar watermelons(Citrulus Vulgaris Schrad) harvested on Oct. 20,1998. Sixty watermelons were tested on flour different types of sample holders, with four kinds of ball made of different materials, at four bevels of the angular position of the pendulum and distance from the watermelon to the microphone. Since the magnitudes of frequencies obtained by hitting with the steel and rubber ball were relatively small at the bandwidths of above 500 Hz, it was shown that the steel and rubber ball were not suitable far a hitting ball in the pendulum to get informations on internal quality of the watermelon. In case of using broth of the wood and acryl ball, almost the same and good acoustic responses were shown on the wide range of frequency bandwidth. Therefore, it seemed that the acryl ball was more suitable to the test than the wood ball in considering its mechanical properties. The acoustic characteristics of the watermelon were not shown a significant difference between the types of sample holder. The amplitudes of the acoustic signals and the magnitudes of frequencies from the whole samples increased with increase of the angular position of pendulum and with decrease of the distance from the watermelon to the microphone. However, the resonance resonance of the sample were almost the same regardless of the angular positions and the distances.

섹시한 음성의 음향학적 특징 연구 (A Study on the Acoustic Characteristics of Sexy Voice)

  • 정옥란;조성미
    • 대한음성학회지:말소리
    • /
    • 제57호
    • /
    • pp.73-84
    • /
    • 2006
  • The purpose of this study was to explore the acoustic characteristics of sexy voice. In this study, we measured acoustic parameters (fundamental frequency, jitter, shimmer, and nasalance) of a sustained vowel sound produced by 40 actors (20 males and 20 females) and 40 non-actors (20 males and 20 females). Digital audio recordings were made in the sustained vowel |a| for acoustic analyses using Praat (version 4.1.9) and Nasal View (version 4.5). Twenty voice pathologists participated in the listening experiment and judged the degree of sexiness on a 7-point scale. The results showed that fundamental frequency, shimmer and nasalance had significant differences between actors and non-actors. The acoustic parameters of sexy voice matched perceptual aspects of a previous study: Low fundamental frequency-low pitch and high shimmer-husky voice. On the other hand, the nasalance score did not match that of the previous study: Decreased nasalance had a higher score on sexiness scale judged by the listeners. It would be desirable to study the voice quality by analyzing and controlling more acoustic and auditory parameters for practical applications in the future.

  • PDF

직접방사형 스피커의 음향특성 해석및 설계 (Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker)

  • 김준태;김정호;김진오
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

압축기용 흡입머플러의 음향 및 유동해석 (Acoustic and Flow-filed Analysis of Suction Muffler in Compressor)

  • 주재만;이학준;오상경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1162-1167
    • /
    • 2001
  • Suction valve fluttering is generated by reciprocating motions of the piston inhaling and discharging process of gas in the hermetic compressor. A reactive type suction muffler, which produces high pressure-drop because of its complicated flow path, controls the impulsive noise radiated from the flutter of suction valve. The high-pressure drop in the muffler increases the transmission loss, but reduces the EER(Energy Efficiency Ratio) of the compressor. We consider how to design the high acoustic attenuation and low pressure-drop performance to take account of the acoustic and flow performances of the suction muffler. In this study, we identified the suction noise source of compressor from the measurement of the acoustic pulsation and flutter of suction valve. We analyzed the acoustic characteristics of muffler using the finite element method, and compared the experimental and analytical characteristics of flow path of suction muffler. Theoretical predictions and experimental results are compared from the viewpoint of the acoustic performance and energy efficiency of the compressor.

  • PDF

수중폭발충격에 대한 수중음향 트랜스듀서의 내충격 특성 해석 (Analysis for Anti-shock Characteristics of Underwater Acoustic Transducers to the Explosive Shock)

  • 고병준;서희선
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1108-1114
    • /
    • 2006
  • Underwater acoustic transducers can be exposed to a underwater explosive shock caused by various types of underwater weapon. So, a robust anti-shock design is required for transducers to endure the underwater explosive shock. To check the anti-shock characteristics of a transducer, underwater explosive shock test is needed. The conditions of underwater explosive shock test are set up referring to various oversea explosive shock test specifications, and the explosive shock pressure values are calculated according to those conditions. Transient analyses art: carried out for two kinds of underwater acoustic transducer model to verify the anti-shock characteristics. The applied model has robust anti-shock characteristics enough to endure the explosive shock up to 2300 psi. In the future, the transducer design should be certified through the fields test, and modified if needed.

담화상에 나타나는 목적격표지 {-를}의 음향적 특성 (The Acoustic Characteristics of the Korean Accusative Marker {l${\i}$l} in Discourse)

  • 김기호;김화영;김민정
    • 음성과학
    • /
    • 제6권
    • /
    • pp.55-82
    • /
    • 1999
  • The purpose of this paper is to investigate the acoustic characteristics of the Korean accusative marker {-lil} which functions as a discourse marker in discourse. Generally, in written texts or read speeches, it is seldom omitted and it certainly seems to serve a grammatical function. But in ordinary discourse, speakers do not use it in many cases. That is, the environments speakers use {-lil} differ from those they do not. According to the semantic interpretations, {-lil} functions as a pragmatic factor and adds to the meaning of the object in an utterance. In this paper, by comparing the acoustic characteristics of the utterances that contain the marker {-lil} with those of utterances that do not, especially based on Korean Intonational Phonology, we will demonstrate that the Korean accusative marker {-lil} shows clearly the acoustic characteristics related to the pragmatic factors which reflect speakers' special intention.

  • PDF

진동/음향 일방연성해석에 의한 스피커의 음향특성 연구 (Acoustic Characteristics of a Loudspeaker Obtained by Vibroacoustic Analysis)

  • 김준태;김정호;김진오;민진기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.153-159
    • /
    • 1996
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The vibration displacement of the speaker cone paper obtained by the finite element analysis has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics and the sound pressure distribution of the loudspeaker resulted from the radiation of the cone vibration have been calculated by the boundary element analysis. The numerical results have been verified by experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameters have been examined using the numerical model.

  • PDF

수중 음향재료의 음향성능 설계기법 연구 (A Study on the Acoustic Performance Design Technique of Underwater Acoustic Material)

  • 서영수;함일배;전재진
    • 한국소음진동공학회논문집
    • /
    • 제23권10호
    • /
    • pp.920-927
    • /
    • 2013
  • The requirement of acoustic performance about underwater acoustic material which is used in underwater environment more increases. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. In order to increase an acoustic performance, several kinds of inclusions were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques were introduced and the acoustic characteristics of underwater acoustic material were studied. Echo reduction and transmission loss were calculated with volume fraction of inclusion in the material. Also the characteristic impedance and the input impedance of underwater acoustic material were obtained and effects on the echo reduction and transmission loss of material were discussed.

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 - (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation -)

  • 황상동;이창호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석 (The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer)

  • 신구균;서영수;강명환;전재진
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.56-64
    • /
    • 2013
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, materials of acoustic window and characteristics of damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result, these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction