• Title/Summary/Keyword: Acoustic Cavity

Search Result 238, Processing Time 0.038 seconds

FEM acoustic modal analysis due to location of acoustic baffles to avoid acoustic resonance in the tube bank of boiler for power plant (보일러 튜브군의 음향공진 회피를 위한 음향배플의 위치에 따른 FEM 음향모드해석)

  • Ahn, Sung-Jong;Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.150-154
    • /
    • 2012
  • A flow induced mechanical vibration and acoustic resonance should be considered at design stage because they are mainly occurred in the tube bank of boiler. Acoustic resonance is occurred when the vortex shedding frequency of tube bank coincides with the acoustic natural frequency of the cavity. Effective solution to avoid acoustic resonance is installing acoustic baffles in the tube banks parallelly inside of the flow cavity. Thus, location and number of acoustic baffles should be exactly calculated to eliminate the acoustic resonance. This paper presents case study of acoustic resonance due to inappropriate number and location of acoustic baffles. Measured frequency and mode in the study is verified by FEM acoustic modal analysis. The number and location of acoustic baffles to avoid acoustic resonance are calculated by using FEM acoustic modal analysis.

  • PDF

Aeroacoustic Computation of Cavity Flow in Self-Sustained Oscillations

  • Koh, Sung-Ryong;Yong Cho;Young J. Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.590-598
    • /
    • 2003
  • A computational aero-acoustic (CAA) method is used to predict the tonal noise generated from a cavity of automobile door seals or gaps at low flow Mach numbers (A$\_$$\infty$/=0.077 and 0.147) In the present method, the acoustically perturbed Euler equations are solved with the acoustic source term obtained from the unsteady incompressible Navier-Stokes calculations of the cavity flow in self-sustained oscillations. The aerodynamic and acoustic fields are computed for the Reynolds numbers based on the displacement thickness, Re$\_$$\delta$*/=850 and 1620 and their fundamental mode characteristics are investigated. The present method is also verified with the experimentally measured sound pressure level (SPL) spectra.

Experiments on Temperature Effect on Air Cavity Resonance and Tire's Vibration Characteristics of a Radial Tire (온도 변화가 승용차용 레이디얼 타이어의 공기공동 공명 및 타이어의 진동특성에 미치는 영향에 관한 실험)

  • Kim, Yong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.102-110
    • /
    • 2008
  • It is well known that the acoustic cavity inside the tire-wheel assembly contributes to vehicle interior noise and ride comfort. In this paper, we performed acoustic and structural modal testings by varying the temperature ranging from $20^{\circ}\;to\;45^{\circ}C$ to investigate the effects of temperature on acoustic cavity resonance and structural vibration characteristics for unloaded and loaded tires. The testing has given us some findings, which are reported in this paper.

An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics (내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.

Acoustic Coupling Between Passenger and Luggage Compartments Through Loudspeaker Holes Using Indirect BEM (스피커 구멍을 통한 차실과 트렁크 공간과의 음향 연성에 대한 간접경계요소해석)

  • 정지훈;이정권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-75
    • /
    • 1997
  • Sound transmission from the luggage comparment into the car cabin is important in the viewpoint if exhaust and road noises of passenger cars. In this paper, acoustic modal coupling between passenger and luggage compartments through loudspeaker holes at parcel shelf is dealt with for a sedan type passenger car with rigid rear seat. For these purposes, a half-scaled model car is tested and computed by the indirect BEM. Predicted acoustic transfer functions are compared with experimental ones and they agree reasonably well. It is found that the fore-aft resonance frequencies of the passenger cavity in the absence of coupling holes are tend to shift to higher frequencies when the luggage compartment is coupled to the passenger cavity.

  • PDF

Characteristics of the aero-acoustic noise generated from the inter-coach spacing of a high-speed train (고속열차의 차간 공간에서 발생하는 공력소음의 특성)

  • Park, Jun-Hong;Park, Chan-Kyung;Choi, Sung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1259-1263
    • /
    • 2006
  • The inter-coach spacing is one of the most important sources of the aero-acoustic noise of a high-speed train. When fluid at high speed flows over an open cavity, such as the inter-coach spacing, large acoustic pressure fields inside the cavity are produced by fluid/structure interactions at the downstream end of the cavity. In this study experiments were performed to investigate the characteristics the aero-acoustic noise generation from the inter-coach spacing of a high-speed train. Results of the measurement confirmed that the noise generated from the gap between mud-flaps are strongly dependent on the size of the gap.

  • PDF

A Study on Measurement and Reduction of Cavity Resonance Based on the Internal Acoustic Modeling of Compressor (공조용 압축기의 Cavity Resonance의 측정 및 저감에 관한 연구)

  • Ahn, B.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-33
    • /
    • 1999
  • Pressure pulsation Inside the discharge and suction cavity of rotary and scroll compressor are often a major source of objectionable noise and vibration. The key factor of these noise and vibration is due to the cavity resonance. It is not only necessary to understanding the characteristics of pulsation in order to reduce the excitation force of gas to the cavity but also to verifying the phenomena of cavity resonance. For the purpose of these understandings, measurement and simulation of cavity resonance can lead to a better understandings how they occur and be very important to identify the ways to reduce the noise efficiently. In this paper, modeling of the cavity(internal acoustics inside the shell) is discussed and simulated using FEM. Results from the simulation are compared with those measurement in experiments. In describing of cavity mode by experiments, it is very important to specify the exact conditions under which they are measured. Finally, this paper shows the one example of reduced cavity resonance in the compressor.

  • PDF

Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique (경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석)

  • Ju, Hyun-Don;Seo, Won-Jin;Lee, Shi-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

A study on the relationship between acoustic modes in tire-wheel guard space and high frequency road noise (타이어-휠가드 공간의 음장모드와 고주파성 로드노이즈의 상관성 연구)

  • Lee, Jong Hyun;Ku, Yo Cheon;Lee, Jin Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • The space between tire and wheel guard acts as a path for tire pattern noise transmission. In this study, acoustic phenomenon occurring in the tire-wheel guard space is investigated using acoustic mode analysis and visualization of the sound pressure distribution over the wheel guard surface. We introduced a cavity over the wheel guard surface to reduce the tire pattern noise, where the cavity acts as an acoustic damper. The interior noise was reduced by 2 dB(A), and the noise control measures treated in this study may provide an efficient method to improve interior sound quality without increasing cost and weight at the final stage of the vehicle development.

Influences of Air Cavity on the Sensitivity of a Mandrel Type fiber Optic Acoustic Sensor (Air cavity가 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.3-7
    • /
    • 2000
  • This paper is on the sensitivity characteristics of a concentric composite mandrel type fiber optic acoustic sensor with inclusion of an air cavity With the finite element method, we have analyzed sensitivity variation of the sensor in relation to its geometrical factors such as thickness of the air cavity, thickness of the foaming layer, and the ratio of inner diameter/outer diameter of the mandrel. Results of the analysis suggest a thicker air cavity, a thinner foaming layer, and a smaller ratio of the inner diameter/outer diameter of the mandrel to be desirable for higher sensitivity. The sensor structure designed with the above rules provides the sensitivity of about 0.8dB higher than that of a normal concentric composite mandrel sensor without the inherent air cavity.

  • PDF