• Title/Summary/Keyword: Acoustic Application

검색결과 579건 처리시간 0.247초

높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델 (An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment)

  • 박순홍;서상현
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S.;Leman, Z.;Baharudin, B.T.H.T.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1075-1095
    • /
    • 2015
  • The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.

Application of Neural Network to Determine the Source Location in Acoustic Emission

  • Lee, Sang-Eun
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.475-482
    • /
    • 2005
  • The iterative calculation by least square method was used to determine the source location of acoustic emission in rock, as so called "traditional method". The results were compared with source coordinates infered from the application of neural network system for new input data, as so called "new method". Input data of the neural network were based on the time differences of longitudinal waves arrived from acoustic emission events at each transducer, the variation of longitudinal velocities at each stress level, and the coordinates of transducer as in the traditional method. The momentum back propagation neural network system adopted to determine source location, which consists of three layers, and has twenty-seven input processing elements. Applicability of the new method were identified, since the results of source location by the application of two methods were similarly concordant.

음향계의 해석을 위한 부분구조합성법의 적용 (Application of Substructure Synthesis Method for Analysis of Acoustic System)

  • 오재응;고상철;조용구
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

반사형 음향 현미경의 구성과 그 응용 (The construction of Accoustic Reflection Microscope and its application)

  • 고대식
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1987년도 학술발표회 논문집
    • /
    • pp.48-51
    • /
    • 1987
  • In this paper, acoustic reflection microscope system has been built for the purpose of detecting subsurface defects in materials and demonstrated for nondestructive testing application. 100 won coin, aluminuim, ceramics, and IC component employed as experimental samples and acoustic reflection microscope was operated in the focused and defocused mode at a frequency of operation of 3 MHz. It has been found that acoustic reflection icroscope has the resolution of 500 ${\mu}{\textrm}{m}$ and it has been an excellent tool for nondestructive testing.

  • PDF

차실내 소음 개선을 위한 차음재 및 제진재의 효과적 적용 (Effective application of insulations and deadeners improving the vehicle interior noise)

  • 이정권;김인동;이영섭
    • 오토저널
    • /
    • 제14권4호
    • /
    • pp.68-78
    • /
    • 1992
  • Vibration and vibro-acoustic characteristics of body panels enclosing the vehicle interior cabin are tested and analyzed for effective application of sound proofing materials. A set of deadener and insulation packages are proposed based on the experimentally evaluated and categorized contributions of noise radiating panels. The suggested packages are applied to a prototype vehicle, and a refined acoustic quality is achieved. A systematic experimental procedure proposed in this study can be a good tool in tuning the acoustic quality of prototype vehicles within a limited development period.

  • PDF

액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구 (Application of Combustion Stabilization Devices to Liquid Rocket Engine)

  • 손채훈;문윤완;류철성;김영목
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

압전 수정 결정 미량 천평[PZ QCM] 바이오센서의 원리와 응용 (The Theory and Application or Piezoelectric Quartz Crystal Microbalance[PZ QCM] for Biosensor)

  • 김의락
    • KSBB Journal
    • /
    • 제18권2호
    • /
    • pp.79-89
    • /
    • 2003
  • This article contains an overview of acoustic wave devices, the theory and application of piezoelectric quartz crystal microbalances(PZ QCM), clinical analysis, gas phase detection, DNA biosensors, drug analysis, food microbial analysis and environmental analysis.

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • 제2권3호
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.