• Title/Summary/Keyword: Acoustic Analysis

Search Result 2,497, Processing Time 0.027 seconds

The Analysis about Channel Code Performance of Underwater Channel (수중통신채널에서 고려되는 채널 부호의 성능 분석)

  • Bae, Jong-Tae;Kim, Min-Hyuk;Choi, Suk-Soon;Jung, Ji-Won;Chun, Seung-Yong;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.286-295
    • /
    • 2008
  • Underwater acoustic communication has multi path error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, we consider the use of various channel coding schemes such as RS code, convolutional code, cross-layer code and LDPC code in order to compensate the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error, so interleaver has little effect for error correcting. For correcting of error floor by multipath error, it is necessary strong channel codes like LDPC code that is similar to Shannon's limit. And the performance of concatenated codes including RS codes has better performance than using singular channel codes.

Quantitative Determination of 3D-Printing and Surface-Treatment Conditions for Direct-Printed Microfluidic Devices

  • Hyun Namgung;Abdi Mirgissa Kaba;Hyeonkyu Oh;Hyunjin Jeon;Jeonghwan Yoon;Haseul Lee;Dohyun Kim
    • BioChip Journal
    • /
    • v.16
    • /
    • pp.82-98
    • /
    • 2020
  • We report a quantitative and systematic method for determining 3D-printing and surface-treatment conditions that can help improve the optical quality of direct-printed microfluidic devices. Digital light processing (DLP)-stereolithography (SLA) printing was extensively studied in microfluidics owing to the rapid, one-step, cleanroom-free, maskless, and high-definition microfabrication of 3D-microfluidic devices. However, optical imaging or detection for bioassays in DLP-SLA-printed microfluidic devices are limited by the translucence of photopolymerized resins. Various approaches, including mechanical abrasions, chemical etching, polymer coatings, and printing on transparent glass/plastic slides, were proposed to address this limitation. However, the effects of these methods have not been analyzed quantitatively or systematically. For the first time, we propose quantitative and methodological determination of 3D-printing and surface-treatment conditions, based on optical-resolution analysis using USAF 1951 resolution test targets and a fluorescence microbead slide through 3D-printed coverslip chips. The key printing parameters (resin type, build orientation, layer thickness, and layer offset) and surface-treatment parameters (grit number for sanding, polishing time with alumina slurry, and type of refractive-index-matching coatings) were determined in a step-wise manner. As a result, we achieved marked improvements in resolution (from 80.6 to 645.1 lp/mm) and contrast (from 3.30 to 27.63% for 645.1 lp/mm resolution). Furthermore, images of the fluorescence microbeads were qualitatively analyzed to evaluate the proposed 3D-printing and surface-treatment approach for fluorescence imaging applications. Finally, the proposed method was validated by fabricating an acoustic micromixer chip and fluorescently visualizing cavitation microstreaming that emanated from an oscillating bubble captured inside the chip. We expect that our approach for enhancing optical quality will be widely used in the rapid manufacturing of 3D-microfluidic chips for optical assays.

A Study on Skin Status with Acoustic Measurements of Skin Friction Noise (피부 마찰 소음 측정을 통한 피부 상태 연구)

  • Chang, Yun Hee;Seo, Dae Hoon;Koh, A Rum;Kim, Sun Young;Lim, Jun Man;Han, Jong Seup;Lee, Sang Hwa;Park, Sun Gyoo;Kim, Yang Han
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Efficacy of cosmetics has been mainly evaluated by qualitative and quantitative methods based on visual sense, tactile sense and skin structure until now. In this study, we suggested a novel evaluation method for skin status based on sound; measuring and analyzing the rubbing noise generated by applying cosmetics. First, the rubbing noise was measured at a close range by a high-sensitivity microphone in anechoic environment, and the noises were analyzed by 1/3 octave band analysis in frequency-domain. Three conditions, 1) before washing, 2) after washing and 3) after application of cosmetics, were compared. As a result, sound pressure level (SPL) of rubbing noise after washing was larger than that of before washing, and the SPL of rubbing noise after cosmetic application was the smallest. Furthermore, the energy of rubbing noise after application was higher than that of the before and after washing conditions in a low frequency band (lower than 2 kHz region). Conversely, the energy of rubbing noise after application was much lower than the others in a high-frequency band (upper than 2 kHz region). This change of energy distribution was described as a balloon-skin model. High SPL in the low frequency region after the cosmetic applications was due to the increase of "flexibility index", while SPL in the high frequency region significantly decreased because of the attenuation which is related to "softness index". Therefore, we developed two indices based on the spectrum-energy difference for evaluating skin conditions. This proposed method and indices were verified via skin flexibility and roughness measurement using cutometer and primos respectively. These results suggest that acoustic measurement of skin friction noise may be a new skin status evaluation method.

A Study of the Vibration Characteristics of a Haptic Vibrator for Horizontal and Vertical Magnetization (수평 및 수직 착자에 대한 햅틱 진동자의 진동특성에 관한 연구)

  • Ko, Dong Shin;Hur, Deog Jae;Park, Tae Won;Lee, Jai Hyuk;Lee, Sung Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.415-421
    • /
    • 2015
  • This paper describes the study of the design procedure for the step-by-step setup parameters and of the magnetizing method for performance and size reduction in the development of a haptic vibrator. The study of magnetization was accomplished by comparing the electromagnetic force in accordance with the horizontal and the vertical magnetization. The theoretical results indicated that the horizontal magnetization resulted in a better performance. The systematic design of a step-by-step procedure for establishing the design parameters was verified by testing the characteristics of the fabricated prototype product. The vibration response function analysis and electric field analysis were processed by decoupling of the analytical method, and these were determined to be in good agreement with the test results. The design parameters to contributing to the product reliability included the spring height, the welding position, and the coil position. The sensitivity of the electromagnetic field and the performance change were analyzed based on the design parameters. As a result, we proposed a design method to implement a reliability-based, high performance haptic vibrator.

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

Acoustic Analysis for Thermal Environment-related Vocalizations in Laying Hens (산란계의 열환경별 특이음에 대한 음성학적 분석)

  • Jeon, J.H.;Yeon, S.C.;Ha, J.K.;Lee, S.J.;Chang, H.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.697-702
    • /
    • 2005
  • The aim of this study was to divide vocalizations of laying hens (Hy-Line Brown) into general vocalizations (GVs), heat stress-related vocalization (HSV), and cold stress-related vocalizations (CSVs) and to determine if they are classified by the discriminant function analysis method. Thirty laying hens, 65-wk-old, were recorded using digital video recorders 2 times from 10:00 to 14:00 h in each thermal environment (thermoneutral: $22.0{\pm}1.8^{\circ}C$, too hot: $32.0{\pm}2.0^{\circ}C$, too cold: $8.0{\pm}1.9^{\circ}C)$ after a 7 day acclimation period. When the laying hens were not recorded, they were kept in thermoneutral conditions. The GVs, HSV, and CSVs were divided based on the shapes of spectrums and spectrograms. The GVs, HSV, and CSVs were identified as 5, 1, and 3 types, respectively. Pitch, intensity, duration, formant 1, formant 2, formant 3, and formant 4 among the thermal environment-related vocalizations were significantly different (P<0.001). The discrimination rate determined by discriminant function analysis was 86.2%. These results suggest that HSV and CSVs are present and may be used as an indicator of the thermal environment.

The Effect of Triamcinolone Injection on the Vocal cord during Laryngeal Microsurgery in the Patient of the Vocal Polyp (성대용종환자에서 후두미세수술시에 수술부위에 Triamcinolone 국소주입이 음성에 미치는 영향에 대한 연구)

  • Yoo, Jun;Oh, Kyung Ho;Yoon, Hee Chul;Lee, Doh Young;Woo, Jeung soo;Baek, Seung Kuk;Jung, Kwang Yoon;Kwon, Soon Young
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.2
    • /
    • pp.122-126
    • /
    • 2015
  • Background and Objective : Laryngeal microscopic surgery (LMS) is popular method to treat for vocal polyp. There is not always the improvement of the voice after operation. Many methods have been developed for better outcome of the surgery. The purpose of this study is to investigate the effect of the triamcinolone injection at vocal cord during LMS. Materials and Methods : The medical records of 28 patients, received LMS under diagnosis of vocal polyp, were retrospectively reviewed. The patients were divided into two groups depending on whether triamcinolone injected or not (case group : Triamcinolone-injected group, control group : Triamcinolone-not injected group). The quality of voice was evaluated by GRBAS scale, fundamental frequency (Fo), jitter, shimmer and NHR (Noise to harmonic ratio) at previous operation, 4 weeks after operation, 8 weeks after operation. Each voice analysis factor was compared between case group and control group by Independent t-test. Results : The mean differences of each voice analysis factor. The mean difference of Jitter, Shimmer, NHR in case group were lower than in control group, and mean difference of GRBAS scale in case group were higher than in control group. These differences were not significant (p>0.05). Conclusion : Though there was a tendency of better voice outcome in patients of triamcinolone-injection, it may not be concluded that the triamcinolone injection is helpful for better voice outcome in surgery of vocal polyp due to statistical insignificance.

  • PDF

Computational Analysis on the Noise Characteristics of Ship Large Duct (선박용 대형 덕트의 소음 특성 전산해석 연구)

  • Song, Jee-Hun;Hong, Suk-Yoon;Lee, Yi-Soo;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.751-758
    • /
    • 2015
  • Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994). However, the method is not suitable for large ducts in ships. In this paper, computational analysis methods are used to develop a noise prediction method for the large ducts in ships. To develop regression formula of attenuation of sound pressure level in large ducts, Boundary Element Method(BEM) is used. BEM and Computational Fluid Dynamics(CFD) are applied to the analysis of flow-induced noise in ducts with stiffeners inside. Loud noise above 100 dB can be generated in some cases. Breakout noises of large ducts are also analyzed by using BEM and Finite Element Method(FEM). The acoustic pressure level shows about 10-15dB difference between inside and outside of the duct. Utilizing the results of this study, it is expected that shipyard planners can predict noise of the HVAC system for ships.

Comparative Analysis on the Sound Characteristics of Riffles and Pools (여울과 소의 소리특성 비교 분석)

  • Kang, Su-Jin;Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.878-886
    • /
    • 2018
  • This study quantified the sounds of riffles and pools in natural rivers and conducted a comparative analysis of the frequency and sound pressure per flow velocity. The surveyed area was Namdaecheon basin in Yangyang-gun, Gangwon-do and the sounds of a total of 23 sites were analyzed. A hydro microphone was used to measure the sound and analyze the data using an acoustic analysis program. The location was also selected at places with minimal ambient noise and the measurement points were the depth of riffles and pools. The results revealed an average difference of 0.515 m/s for flow velocity at 8 riffles and 15 pools. The difference in sound pressure occurred due to the flow velocity. In the case of sound pressure, it was measured at an average of 176.8 dB for riffles and 168.2 dB for pools, demonstrating a difference of approximately 8.6 dB. Furthermore, in the case of maximum sound pressure, riffles showed a constant range between 200 Hz and 250 Hz, while the pools exhibited maximum sound pressure at various frequencies from 200 Hz to 1,000 Hz. This revealed the ecological stream reproduction, development of preferred sound sources for aquatic life, and design of structures.