• Title/Summary/Keyword: Acidic soils

Search Result 139, Processing Time 0.025 seconds

Degradation of Dinobuton in Soil and Solution (Dinobuton의 토양(土壤) 및 용액중(溶液中)에서 분해(分解))

  • Hong, Jong-Uck;Kim, Jung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.2
    • /
    • pp.16-22
    • /
    • 1984
  • This study was carried out to investigate the stability of dinobuton (2-sec-butyl-4,6-dinitrophenyl isopropyl carbonate) in distilled water and buffer solutions and its persistence in soils. When dinobuton was incubated at $30^{\circ}C$ and $60^{\circ}C$ in distilled water, the half-lives of dinobuton was 28 and 6 days, respectively. The decomposition of dinobuton was, therefore, faster at high temperature than at low temperature. The half-life of dinobuton was about 27 days in the acidic solution $(pH\; 4{\sim}6)$, whereas 10 and 4 days in the alkaline solutions of pH 9, and 10, respectively. Thus dinobuton was stable in acidic solution, and unstable in alkaline solution. Dinoseb (2-sec-butyl-4,6-dinitrophenol), which is produced in the degradation process of dinobuton, was produced in small amounts in distilled water and buffer solutions. The half-life of dinobuton in sterilized soil was about 16 days longer than in non-sterilized soil. Dinoseb was also more persistent in sterilized soil than in non-sterilized one.

  • PDF

The Effects of CO2 Released from Deep Geological Formations on the Dissolution Process of Galena in Shallow Subsurface Environments (지중저장 이산화탄소의 누출이 천부환경에서 방연석의 용해 과정에 미치는 영향)

  • Nam, Jieun;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • If $CO_2$ stored for geological sequestration escapes from deep formations and is introduced to shallow aquifers, it dissolves into groundwater, creates acidic environments, and enhance mineral dissolution from rocks and soils. Among these minerals, dissolution and spread of hazardous trace metals can cause environmental problems with detrimental impacts on groundwater quality. This study aims to investigate geochemical effects of $CO_2$ in groundwater on dissolution of galena, the main mineral controlling the mobility of lead. A series of batch experiments are performed with granulated galena in $CO_2$ solutions under various experimental conditions for $CO_2$ concentration and reaction temperature. Results show that dissolution of galena is significantly enhanced under acidic environments so that both of equilibrium concentrations and dissolution rates of lead increase. For thermodynamic analysis on galena dissolution, the apparent rate constants and the activation energy for galena dissolution are calculated by applying rate law to experimental results. The apparent rate constants are $6.71{\times}10^{-8}mol/l{\cdot}sec$ at $15^{\circ}C$, $1.77{\times}10^{-7}mol/l{\cdot}sec$ at $25^{\circ}C$, $3.97{\times}10^{-7}mol/l{\cdot}sec$ at $35^{\circ}C$ and the activation energy is 63.68 kJ/mol. The galena dissolution is suggested to be a chemically controlled surface reaction, and the rate determining step is the dissociation of Pb-S bond of surface complex.

Studies on the Marginal leaf chlorosis of Ginseng Plant (1) The Effect of Excess Manganese uptake on the occurrence of marginal leaf chlorosis (인삼의 엽록형 황증에 관한 연구 제1보 Mn의 과잉흡수가 엽록형 황증발생에 미치는 영향)

  • 이태수;김명수;홍순근
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 1989
  • This study was conducted to determine the cause of the occurence of marginal leaf chlorosis in ginseng plants (Panax ginseng C.A. Meyer), and to determine its emersion in fields (practically) and in pots (experimentally). The following results were obtained. In the Present investigation, ginseng plants raised in acidic soil containing a high a moue t of Mn showed marginal leaf chlorosis. Henre it Ivas suggested that the shoot growth and root weights became grad gractually lower. The leaves having marginal leaf chlorosis contained low amounts of N, P,. Ca, Mg, and Na and the Fe/Mn ratios were low. There was a corresponding increase in Mn uptake. It was founrl that in soils where marginal leaf chlorisis occured the pH urar brlolv 4.2 to 4.9 and the Ca, Mg and Na content was decreased thus effectively increasing the available manganese in the soil. The Mn/Fe ratios in the yellow leaf margins of ginseng Plants affected by the Mn toxicity was over 2.0 compared to the general Mn/Fe ratio of 0.50 for healthily leaves, stems and roots. Typically when ginseng plants grow fields having soil with a pH below about 5.0, there tenor to be an uptake of excess Mn. When ginseng plants are grown in a nutrient sand culture solution It with an increased Mn concentration, they accumulate large amounts of Mn in the roots and in the shoots. In both casts marginal leaf chlorosis appeared in the emersions. In the Present investigation, ginseng plants raised in acidic soil and containing a high amount of Mn showed marginal leaf chlorosis.

  • PDF

Isolation and characterization in the exhausted mine and Jeju Gotjawal (국내 폐광산 및 제주 곶자왈 지역내의 미생물 분리 및 특징 분석)

  • Kim, Ye-Eun;Koh, Hyeon-Woo;Kim, So-Jeong;Do, Kyoung-Tag;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.309-315
    • /
    • 2017
  • Most of acidophiles are found in the various low pH environments and affect to metal cycle through oxidation and reduction reactions. The present study was carried out above 50 strains as acidophiles isolated from acidic soils of exhausted mine and Jeju Gotjawal. Finally, total 19 strains obtained and were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological characterizations. These isolates belonged to Gammaproteobacteria (6 strains), Actinobacteria (5 strains), Betaproteobacteria (4 strains), Alphaproteobacteria (2 strains), and Bacilli (2 strains). We observed that these isolates can grow under low pH culture condition. This case study for analysis physiological characterizations of indigenous microorganisms in acidic soil might provide basic information on useful application.

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

Evaluating Possibility of Heavy Metal Accumulation by Fly Ash Application in Rice Paddy Soils (논토양에서 석탄회시용에 따른 중금속 축적가능성 평가)

  • Hong, Chang-Oh;Lee, Chang-Hoon;Lee, Hyup;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.331-338
    • /
    • 2006
  • Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of soil amendment in this study. Two field experiments were carried out to evaluate the possibility of heavy metal accumulation in silt loam (Pyeongtaeg series) and loamy sand (Nagdong series) of rice (Oryza sativa) paddy soils to which 0, 40, 80, and $120Mg\;ha^{-1}$ of fly ash were added. Rice yields increased significantly with fly ash application and the highest rice yields were achieved following the addition of around $90Mg\;ha^{-1}$ fly ash. Fly ash increased the soil pH but did not increase heavy metal uptakes of rice and heavy metal concentration in soils, due to very low concentration of heavy metals in the selected fly ash. Labile fraction of heavy metals (exchangeable + acidic fraction) was scarcely contained and most of them were stable and unavailable form (oxidizable and residual fraction). In conclusion fly ash could be a good supplement to an inorganic soil amendments without heavy metal contamination in paddy soils.

Geochemical Dispersion and Contamination Characteristics of Heavy Metals in Soils and Leaves of Ginkgo biloba in Seoul Area (서울지역 가로수 토양과 은행나무 잎 중의 중금속 원소들의 지구화학적 분산과 오염특성)

  • Choo Mi-Kyung;Kim Kyu-Han;Lee Jin-Soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.221-236
    • /
    • 2005
  • In order to investigate the contamination levels and dispersion patterns of heavy metals such as Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn by urbanization, soils beneath roadside-trees and leaves of Ginkgo biloba were collected from Seoul area during October to November in 2001. All tree leaves were grouped into washed and unwashed ones. The pH of most soil ranges from 6 to 9 indicating a weak acidic and alkaline. The element couples of Cd-Co, Cr-Ni and Zn-Cu-Pb have good correlation in soils, and contamination sources of Cd-Co, Cr-Ni and Zn-Cu-Pb could be similar. High correlation coefficients among Pb, Cu and Zn in G. biloba indicates that these elements show the similar behavior during the metabolism processes. From the results of pollution index calculation for soils, industrialized and heavy traffic area were severly polluted by heavy metals such as Cd, Cu, Pb and Zn. By the discriminant analysis, industrialized and heavy traffic areas are enriched in the order of Ni> Cr> Pb. Cadmium is useful to discriminate between industrialized and heavy traffic areas, Co and Pb are highly enhanced in heavy traffic area.

Cadmium and Zinc Uptake Characteristics of Corn Plant in Arable Soil Contaminated by Smelting Factory Source

  • Hong, Chang-Oh;Gutierrez, Jessie;Oh, Ju-Hwan;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The cadmium (Cd) and zinc (Zn) contamination of soils and cultivated crop plants by zinc smelting activities was studied. In the study area of the vicinity of ${\triangle}{\triangle}$ zinc smelting factory in Korea, soils and corn plants were sampled at corn harvesting stage and analyzed Cd and Zn concentration as well as Cd and Zn fraction and chemical properties in soils. At 600 m radius of studied area, Cd and Zn were highly accumulated in the surface soils (0 - 20 cm) showed greater than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with corresponding values 1.7 and 407 mg $kg^{-1}$, respectively. The leaf part gave higher Cd concentration with the corresponding value of 9.5 mg $kg^{-1}$ as compared to the stem and grains pare (1.6 and 0.18 mg $kg^{-1}$), respectively. Higher Zn concentration was also obtained from the leaf part of the corn plant which gave the value of 1,733 mg $kg^{-1}$. The stem and grain part gave corresponding values of 547 and 61 mg $kg^{-1}$. The order of the mean Cd concentration in fractions is F3 (oxidizable fraction) > F2 (reducible fraction) > F4 (residual fraction) > F1 (exchangeable + acidic fraction). A highly positive correlation is observed between F2 and concentration of Cd and Zn in both plant pare, leaf and grain. Highly positive correlations are shown in the pH exchangeable Ca and Mg, and CEC when correlated with Cd and Zn bound to F4 fractions. To reduce Cd and Zn uptake by corn plant in an arable land heavily contaminated with Cd and Zn as affected by smelting factory, an efficient and effective soil management to increase soil pH and CEC is thus recommended.

Understanding of a Korean Standard for the Analysis of Hexavalent Chromium in Soils and Interpretation of their Results (토양오염공정시험기준 6가크롬 분석의 이해와 결과 해석)

  • Kim, Rog-Young;Jung, Goo-Bok;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Yun, Hong-Bae;Lee, Yee-Jin;Song, You-Seong;Kim, Won-Il;Lee, Jong-Sik;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.727-733
    • /
    • 2011
  • A new Korean standard for the determination of Cr(VI) in soils has been officially published as ES 07408.1 in 2009. This analytical method is based on the hot alkaline digestion and colorimetric detection prescribed by U.S. EPA method 3060A and 7196A. The hot alkaline digestion accomplished using 0.28 M $Na_2CO_3$ and 0.5 M NaOH solution (pH 13.4) at $90{\sim}95^{\circ}C$ determines total Cr(VI) in soils extracting all forms of Cr(VI), including water-soluble, adsorbed, precipitated, and mineral-bound chromates. This aggressive alkaline digestion, however, proved to be problematic for certain soils which contain large amounts of soluble humic substances or active manganese oxides. Cr(III) could be oxidized to Cr(VI) by manganese oxides during the strong alkaline extraction, resulting in overestimation (positive error) of Cr(VI). In contrast, Cr(VI) reduction by dissolved humic matter or Fe(II) could occur during the neutralization and acidic colorimetric detection procedure, resulting in underestimation (negative error) of Cr(VI). Futhermore, dissolved humic matter hampered the colorimetric detection of Cr(VI) using UV/Vis spectrophotometer due to the strong coloration of the filtrate, resulting in overestimation (positive error) of Cr(VI). Without understanding the mechanisms of Cr(VI) and Cr(III) transformation during the analysis it could be difficult to operate the experiment in laboratory and to evaluate the Cr(VI) results. For this reason, in this paper we described the theoretical principles and limitations of Cr(VI) analysis and provided useful guidelines for laboratory work and Cr(VI) data analysis.

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.