• 제목/요약/키워드: Acidic environment

검색결과 383건 처리시간 0.025초

계명산층 내의 충주 철광상 주변에 분포하는 산성 변성화산암의 성인 (Genesis of the acidic metavolcanic rocks distributed around the Chungju iron deposit in the Gyemyeongsan Formation)

  • 박맹언;김근수;박계헌
    • 암석학회지
    • /
    • 제14권3호
    • /
    • pp.169-179
    • /
    • 2005
  • 계명산층 내의 충주 철광상 부근에서 산출되는 산성 변성화산암들은 매우 높은 희토류 원소 및 고장력 원소 농도를 갖는다. 비교적 높은 ${\epsilon}_{Nd}$(0) 값과 결여된 Nb(-) 이상치는 이들의 형성에 지각물질에 의한 혼염이 수반되지 않았음을 시사한다. 또한 지구조 판별도에서 판내부 환경에 도시된다. 이러한 지구화학적 특징들은 750Ma의 연대를 보이는 문주리층의 산성변성화산암과 매우 비슷하다. 이들은 Al-형(Eby, 1992)에 분류되는 마그마의 지구화학적 특징을 나타내며, 대륙의 분열과 관련된 열곡환경에서 맨틀기원의 마그마가 분화되어 생성되었음을 지시한다. 약 330Ma의 연대를 보이는 충주 철광상 부근의 알칼리 화강암 및 희유금속광상과는 달리 동일지역에서 산출되는 산성 변성화산암들의 Sm-Nd 동위원소 자료는 명확한 동시선을 형성하지 않는다. 또한 낮은 ${\epsilon}_{Nd}$(0) 값을 갖는 알칼리 화강암과는 달리 산성 변성화산암과 희유금속광상은 비교적 높은 ${\epsilon}_{Nd}$(0) 값을 갖는다. 이러한 차이에 근거하여 다음과 같은 생성가설을 제시한다: 계명산층 내의 충주 철광상 부근에 분포하는 산성 변성화산암은 계명산층의 다른 지역과 문주리층 내의 산성 변성화산암들과 마찬가지로 신원생대인 750Ma에 생성되었다. 약 330Ma 경에 기존 Al-형 화성암과 일부 오래된 지각물질의 용융으로 알칼리 화강암이 생성되었다. 이와 동시에 열수작용으로 인한 산성 화산암 내의 물질 재배치로 희유금속광상이 형성되었으며, 뒤이은 약 280Ma경의 광역변성작용시 산성 변성화산암의 Nd-Sm 동위원소계가 교란되었다.

산성환경 중에서 구상흑연주철재의 마멸-부식거동에 관한 연구 (The Study on the Wear-Corrosion Behavior of Ductile Cast Iron in the Acidic Environment)

  • 임우조;박동기
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.299-304
    • /
    • 2002
  • This paper reports the studies on the wear-corrosion behavior of ductile cast iron in the acidic environment. In atmosphere and variety of pH solution, specific wear rate and wear-corrosion characteristics of GCD 60 with various sliding speed and distance were investigated. And electrochemical polarization test of GCD 60 was examined in the environment of various pH values. The main results are as following : As the contact pressure increases, the critical velocity of specific wear rate becomes transient at low sliding speed. As pH value becomes low, wear-corrosion loss increases in the aqueous solution. As the corrosion environment is acidified, corrosion potential of GCD 60 becomes noble and corrosion current density increases.

산성 환경이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향 (Effect of Acidic Environment on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials)

  • 박미선;김재환;최남기;김선미
    • 대한소아치과학회지
    • /
    • 제43권2호
    • /
    • pp.137-144
    • /
    • 2016
  • 이 연구의 목적은 다양한 산성 환경에서 규산 삼칼슘 재료인 Biodentine$^{(R)}$, Theracal$^{(R)}$, ProRoot MTA$^{(R)}$의 압출강도를 측정하고 표면형태를 관찰하는 것이었다. 각각의 재료에 대해 샘플을 4개의 그룹으로 나누었다. 산성 조건 그룹은 pH 4.4, 5.4, 6.4의 부티르산 조건에서, 대조군 그룹은 pH 7.4의 인산완충식염수 조건에서 4일간 $37^{\circ}C$에서 보관하였다. 이후 압출강도를 측정하고 표면 형태를 분석하였다. Biodentine$^{(R)}$과 Theracal$^{(R)}$은 모든 산성 조건에서 ProRoot MTA$^{(R)}$ 보다 더 높은 압출강도를 보였고 pH 감소에 따라 압출강도가 감소하였다. 주사전자현미경을 이용한 관찰 결과 재료들 모두 산성 조건에서 표면 형태에 상당한 변화를 보였다. 결론적으로, Biodentine$^{(R)}$과 Theracal$^{(R)}$은 ProRoot MTA$^{(R)}$와 비교하여 더 높은 압출강도를 보였다. 또한 산성 조건은 규산삼칼슘 재료들의 압출강도와 미세구조를 약화시킬 수 있다.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

화학사고 빈도가 높은 산 계열 물질의 취급 특성 연구 (A Study on the Characteristics of Production and Using for Acidic Chemicals with High Accident Frequency)

  • 김기준;이진선;윤영삼;정미숙;윤준헌;석광설
    • 한국위험물학회지
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Acidic chemicals like sulfuric acid, nitric acid and hydrogen chloride take up 37% of the total chemical accidents which took place for the past 10 years. When an acidic chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, we have only little reference data for production and using of acidic chemicals. In this study, we investigated characteristics of production and using for acidic chemicals with high accident frequency. As a results, domestic chemical accidents were categorized according to chemical types and production, using, and handling characteristics of acidic chemicals were identified. Sulfuric acid was handled in the largest amount, followed in the order of hydrogen chloride, nitric acid, acrylic acid, and hydrogen fluoride. Sulfuric acid is used in the industry of manufacturing composite fertilizer and mainly used for manufacturing fertilizer. Hydrogen chloride is used in the industry of manufacturing basic chemicals for petrochemical family and mainly used for pH regulator. It is expected that this results could be used as preliminary data for making decisions on facilities required intensive management in order to prevent chemical accidents and prepare countermeasures against such accidents.

Annular Denuder System을 이용한 부산시 대기 중 산성오염물질의 특성 (Characteristics of Acidic Air Pollutants in Pusan Area Using an Annular Denuder System)

  • 정장표;정창용;이학성
    • 한국대기환경학회지
    • /
    • 제13권5호
    • /
    • pp.397-410
    • /
    • 1997
  • An annular denuder filter pack sampling system (ADS) was used to collect acidic air pollutants in Pusan. During the study period (from June 1995 to November 1995), forty eight samples were collected every 12 hours starting from 6:00 in the morning. These samples were devided into two sets of data for day (6:00 a.m.-6:00 p.m.) and night (6:00 p.m.-6:00 a.m.). The chemical species were analyzed for HN $O_3$, HN $O_2$, S $O_2$ and N $H_3$ in the gas Phase, and N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$ and N $H_4$$^{+}$ in the particulate phase. The mean concentrations measured from this study were 0.24, 1.91, 30.07 and 4.24 $\mu\textrm{g}$/㎥ for HN $O_3$, HN $O_2$, S $O_2$ and N $H_3$, respectively. The mean concentrations of N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$ and N $H_4$$^+{\ulcorner}$ were 1.95, 7.36 and 3.48 $\mu\textrm{g}$/㎥, respectively. The mean concentrations of gaseous species except for HN $O_2$ were higher in daytime than in nighttime, but the reverse was true in the particulates except for N $H_4$$^{+}$. +/..

  • PDF

Annular Denuder System을 이용한 수도권지역의 산성오염물질 및 $PM_{2.5}$ 성분농도 특성 (Characteristics of Acidic Air Pollutants and $PM_{2.5}$ Species in Seoul-Metropolitan Areas Using an ADS)

  • 강충민;이승일;조기철;안준영;최민규;김희강
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.305-315
    • /
    • 1999
  • The annular denuder system(ADS) was used to determine characteristics of acidic air pollutants and $PM_{2.5}$ species in Seoul-metropolitan areas. All measurements were done simultaneously in downtown(Kwanghwamun, Mullae, Chamshil, Ssangmun dongs) and outskirts(Puch n, Kuri cities) during four seasons. The samples were analyzed using ion chromatography for gas-phase matters(HCl, $HNO_2$, $HNO_3$ and $SO^2$) and particulate phase matters($Cl^-$, $NO^{2-}$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^-$ and $Ca^{2+}$) and was measured fine particles($PM_{2.5}$). The seasonal mean concentrations of HCl, HNO2, HNO3 and SO2 in downtown and outskirt areas were very similar. All chemical species monitored from this study showed seasonal variations. Nitric acid(HNO3) and Nitrous acid(HNO2) were showed higher concentrations during the summer. $PM_{2.5}$, $SO_4^{2-}$, $NH_4^-$, $NO_3^-$ and $Cl^-$ in the particulate phase matters were higher levels during the winter months. The concentrations of these components were 54.8, 3.82, 2.49, 1.80 and 1.02$\mu\textrm{g}$/㎥, respectively.

  • PDF

Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics

  • Gulsan, Mehmet Eren;Mohammedameen, Alaa;Sahmaran, Mustafa;Nis, Anil;Alzeebaree, Radhwan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제6권2호
    • /
    • pp.199-220
    • /
    • 2018
  • In this study, the effects of sulphuric acid on the mechanical performance and the durability of Engineered Cementitious Composites (ECC) specimens were investigated. The carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP) fabrics were used to evaluate the performances of the confined and unconfined ECC specimens under static and cyclic loading in the acidic environment. In addition, the use of CFRP and BFRP fabrics as a rehabilitation technique was also studied for the specimens exposed to the sulphuric acid environment. The polyvinyl alcohol (PVA) fiber with a fraction of 2% was used in the research. Two different PVA-ECC concretes were produced using low lime fly ash (LCFA) and high lime fly ash (HCFA) with the fly ash-to-OPC ratio of 1.2. Unwrapped PVA-ECC specimens were also produced as a reference concrete and all concrete specimens were continuously immersed in 5% sulphuric acid solution ($H_2SO_4$). The mechanical performance and the durability of specimens were evaluated by means of the visual inspection, weight change, static and cyclic loading, and failure mode. In addition, microscopic changes of the PVA-ECC specimens due to sulphuric acid attack were also assessed using scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that PVA-ECC specimens produced with low lime fly ash (LCFA) showed superior performance than the specimens produced with high lime fly ash (HCFA) in the acidic environment. In addition, confinement of ECC specimens with BFRP and CFRP fabrics significantly improved compressive strength, ductility, and durability of the specimens. PVA-ECC specimens wrapped with carbon FRP fabric showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabric. Both FRP materials can be used as a rehabilitation material in the acidic environment.

중금속 산폐수 처리 후의 상등액을 이용한 염색폐수처리 연구 (A Study on the Treatment of Dyeing Wastewater Using the Supernatant after Treatment of Acidic Metal Wastewater)

  • 신진명;박장진;김미자;주소영
    • 환경위생공학
    • /
    • 제18권1호
    • /
    • pp.41-50
    • /
    • 2003
  • Traditionally the supernatant after chemical treatment of metal acid wastewater is discharged in environment. The supernatant can be used as a coagulant as it contains effective metals. The aim of this study is to investigate the feasibility of treatment of dyeing wastewater using the supernatant after treatment by magnesium hydroxide and dolomite($Ca{\cdot}Mg(CO_3)_2$), of acidic metal wastewater. In dyeing wastewater treatment with the supernatant, optimum pH and dosage were determined. COD, turbidity and color were analyzed to evaluate the performance of treatment. In the case of magnesium hydroxide, the optimum dosage was 10%(v/v) for supernatant A and 3%(v/v) for supernatant B. Color, turbidity and COD removal was 99~100%, 85~97% and 43~53%, respectively. In the case of dolomite, the optimum dosage was 10%(v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96~99%, 62~9l% and 52~53%, respectively.