• Title/Summary/Keyword: Acidic Water

Search Result 700, Processing Time 0.031 seconds

The Effects of Acidic Electrolytic Water on the Development of Barley Chloroplast (산성 전해수가 보리(Hordeum vulgae L.) 엽록체의 발달에 미치는 영향)

  • 정화숙;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.255-261
    • /
    • 1999
  • To investigate the effects of strong acidic electrolytic water on the chloroplast, barley leaves were treated with strong acidic electrolytic water(pH 2.5). And to investigate the effects of weak acidic electrolytic water on the chloroplast development, etiolated barley leaves were treated with weak acidic electrolytic water(pH 6.5) during greening period. Chl contents, Fo, Fv, and Chl fluorescence quenching coefficient in barley leaves were measured during and after treatment of acidic electrolytic water. The following results were obtained. Chl a, b, and carotenoid were decreased with treatment of strong acidic electrolytic water. Chl contents were significantly decreased than that of the control after 5 min. These results provide evidence that the strong acidic electrolytic water dissimilate the Chl and so that the value of Fo was slightly increased. The strong acidic electrolytic water damaged PS II because Fo was increased and Fv, Fm, and Fv/Fm ratio were decreased. qP, qNP and qE were decreased. On the other hand qI was increased than that of the control. But Chl content and Chl fluorescence patterns were a little changed as the pH increase over 4.0 Chl a, b, and carotenoid were increased with treatment of weak acidic electrolytic water during greening period. Chl contents were significantly increased than that of control after 12 hours greening. These results provide evidence that the weak acidic electrolytic water accelerated the chlorophyll synthesis. And the weak acidic electrolytic water accelerated PS II development because Fv, Fm, qP and Fv/Fm ratio were increased than that of the control.

  • PDF

Ammonia neutralization and removal using electrolyzed-acidic water (전해산성수를 이용한 암모니아 중화와 제거)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.185-190
    • /
    • 2021
  • An electrolyzed-acidic water treatment was investigated as a methods for removing ammonia, which is a cause of odor in life environment. The prepared electrolyzed-acidic water was found out as stable solvent capable of neutralizing weak alkaline ammonia by measuring changes in pH and ORP. It was found out that ammonia was removed from the mixture solution of electrolyzed-acidic water and ammonia water by the UV-vis absorbance analysis and electrochemical open-circuit potential measurement. The neutralized ammonia by electrolyzed-acidic water and effectively removed odor was measured using ammonia gas detecter. Consequently, we recommend the electrolyzed-acidic water can effectively and safely remove ammonia in eco-friendly.

Analysis of the Extraction Condition of Soluble Acidic Polysaccharides from Ginseng Marc (인삼박으로부터 수용성 산성다당체의 추출 조건 분석)

  • Choi, You-Jin;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • This study was carried out to investigate the optimum conditions for extraction of soluble acidic polysaccharides from ginseng marc. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in ginseng marc. The amounts of soluble acidic polysaccharides in water extract of ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite the extraction time increasing from 0.5 hours to 6 hours. To estimate the rehydration rate of the freeze dried polysaccharide, the extracted acidic polysaccharide fraction powder was determined the amount of soluble acidic polysaccharides by carbazole-sulfuric acid method again. The rehydration rate of acidic polysaccharides from water-extract of red ginseng marc at room temperature was 100%. On the other hand, the rehydration rate of acidic polysaccharide of red ginseng marc at boiling temperature was about 50%. The rehydration rate of acidic polysaccharides from water-extract of white ginseng marc at room temperature was 50%. The rehydration rate of acidic polysaccharide of red ginseng marc at boiling temperature was about 40%. The rate of soluble acidic polysaccharide of Red Ginseng is higher than that of White Ginseng. We can find out the maximum extraction method of soluble acidic polysaccharide from ginseng marc.

Effect of Electrolyzed Acidic Water on the Growth of Soybean Sprout. (산성 전해수가 콩나물의 생육에 미치는 영향)

  • 윤동준;이정동;강동진;박순기;황영현
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.809-814
    • /
    • 2004
  • To investigate the effect of the electrolyzed acidic water for soybean sprouts growth, the responses of characteristics of soybean sprouts were evaluated. Soybean sprouts grown by the electrolyzed acidic water showed shorter length in total body, root, and hypocotyl, etc. but they were evaluated to be increased in hypocotyl diameter and weight per sprout. Total length of soybean sprouts grown for 5 days by electrolyzed acidic water were much shorter than those by tap water. Soybean sprouts grown by tap water showed rapid growth in length even after 5 days but no more growth in length for those grown by electrolyzed acidic water. The growth of hypocotyl showed the same tendency as total length. No difference in root length among the soybean sprouts grown for 4 ~ 11 days by electrolyzed acidic water while those grown by tap water showed continuous rapid growth in length. The diameter of hypocotyl was thicker in those grown by electrolyzed acidic water than those grown by tap water and increased up 5 days. The weight of cotyledon grown by electrolyzed acidic water showed the proportional increase to the growing days but those grown by tap water showed no increase in hypocotyl weight up to 7 days, but a little bit increase after 11 days with the growth of new buds. The fresh weight per sprout was higher in those grown by electrolyzed acidic water until 7 days than tap water but it was the same weight in 11 days cultivation. The electrolyzed acidic water effected on shortening of hypocotyl and root length, thickening of hypocotyl diameter, and enlarging of cotyledon during soybean sprout cultivation.

Preparation of Red Ginseng Extract Rich in Acidic Polysaccharide from Red Tail Ginseng Marc Produced After Extraction with 70% Ethyl Alcohol (홍미삼 알콜 추출박을 이용한 산성다당체 다량 함유 홍삼 엑기스 제조)

  • 도재호;이종원
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.60-64
    • /
    • 1996
  • In this study, we investigated the appropriate conditions to extract acidic polysaccharide and to prepare red ginseng extract being rich in acidic polysaccharide from red tail ginseng marc produced after manufacturing alcoholic extract from red tail ginseng. Amount of acidic polysaccharide in red tail ginseng marc was about 11%. The best condition for the extraction of acidic polysaccharide from the marc was using of 3~5 mg of $\alpha$-amylase/g residue/15 ml of distilled water, and the amount of acidic polysaccharide in water extract of the residue treated with $\alpha$-amylase was about 27%. So, it is possible to manufacture red ginseng extract being rich in acidic polysaccharide using water extract of red tail ginseng alcoholic residue as extraction solvent. From the above results, we suggest that red tail ginseng residue produced by manufacturing alcoholic extract of red tail ginseng has high potencies in the utilization of waste material.

  • PDF

Manufacturing Process and Component Analysis of Seawater Salt Using Seaweeds (해조류를 이용한 해수소금 제조기법 및 성분분석)

  • Lee, Seung-Won;Kim, Hyeon-Ju;Moon, Deok-Soo;Jung, Dong-Ho;Choi, Hark-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.61-65
    • /
    • 2007
  • In this research, we have developed a manufacturing process for seawater salt by horizontal spray drying technique using the deep ocean water and seaweed(sea tangle). Deep ocean water, strong acidic electrolyzed water and strong alkaline electrolyzed water were used as extraction solvent of seaweed. Sodium content in seaweed extract solution by strong alkaline electrolyzed water was 1.63(mg/g), which was 3.5 times lower than of seaweed extract by strong acidic electrolyzed water. Major mineral content(Na, K, Ca) in seawater salt by deep ocean water were higher than strong acidic electrolyzed water and strong alkaline electrolyzed water. On the contrary, Mg contents in seawater salt by deep ocean water were lower than strong acidic electrolyzed water and strong alkaline electrolyzed water. Based on the results of seawater salt production using seaweed, it is possible to make law-salt efficiently.

Conditioning of the Extraction of Acidic Polysaccharide from Red Ginseng Marc (홍삼박으로부터 산성다당체의 최적 추출 조건 분석)

  • Chang, Eun-Ju;Park, Tae-Kyu;Han, Yong-Nam;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.56-61
    • /
    • 2007
  • This study was carried out to investigate the optimum conditions for extraction of acidic polysaccharides from red ginseng marc produced by manufacturing alcoholic extract from red ginseng. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in red ginseng marc. The amounts of acidic polysaccharides in water extract of red ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite of the extraction time increasing from 6 hours to 48 hours. The contents of starch in water-extract of red ginseng marc were increased with increasing extraction temperature. The starch amounts in water extract of red ginseng marc extracted for 48 hours were increased. The yields of polysaccharide precipitated from water-extract of red ginseng marc were increased with increasing extraction temperature. The hydration rate of acidic polysaccharides and starch from water-extract of red ginseng marc were decreased with increasing extraction temperature. The contents of starch were not significantly different despite of the extraction time increasing from 6 hours to 48 hours at $8^{\circ}C$. However, the rehydration rate of acidic polysaccharide for 48 hours were decreased at $8^{\circ}C$. The rehydration rate of acidic polysaccharide and starch extracted from 6 hours to 24 hours at $25^{\circ}C$ were not significantly different, but those extracted for 48 hours were increased. From the above results, we suggest that by altering the extraction conditions in red ginseng marc it is possible to develop optimum conditions for extraction that modulate the proportions of acidic polysaccharide and starch.

Effects of Washing and Storage Temperature on Quality and Safety of Washed Shell Eggs (세척 수 및 보관온도가 세척 식용란 품질과 안전에 미치는 영향)

  • Choi, Bum-Geun;Min, Ji-Hyeon;Yoon, Ki-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.1
    • /
    • pp.78-87
    • /
    • 2017
  • The objective of this study was to investigate the effects of various washing waters on the quality and safety characteristics of eggs during storage. Eggs were washed with tap water, 100 ppm of sodium hypochlorite, or 30 ppm of slightly acidic electrolyzed water and stored at $10^{\circ}C$ and $20^{\circ}C$. Effects of various washing waters on reduction of Salmonella Enteritidis and aerobic plate counts and survival of S. Enteritidis on egg shells were also analyzed at $10^{\circ}C$ and $20^{\circ}C$ for 25 days. As an index of quality, haugh unit, weight reduction, and pHs of egg white and egg yolk were measured. Reduction percentages of haugh unit and weight were higher at $20^{\circ}C$ than at $10^{\circ}C$. Egg qualities were less affected by tap water, slightly acidic electrolyzed water, and sodium hypochlorite, regardless of storage temperature. The greatest reductions in aerobic plate counts and S. Enteritidis were observed with slightly acidic electrolyzed water. The level of S. Enteritidis on egg shells gradually decreased during 20 days of storage at both $10^{\circ}C$ and $20^{\circ}C$, whereas S. Enteritidis survived longer at $20^{\circ}C$ than at $10^{\circ}C$. S. Enteritidis was not detected in eggs at $10^{\circ}C$, 2.13 log CFU/g of S. Enteritidis was detected in eggs washed with sodium hypochlorite after 20 days of storage at $20^{\circ}C$, indicating that S. Enteritidis penetrated into the egg shell during storage at $20^{\circ}C$. In conclusion, slightly acidic electrolyzed water increased microbial reduction and least affected quality of washed eggs. Thus, slightly acidic electrolyzed water can be recommended for washing of graded eggs, at retail markets.

Recovery of Aluminium Coagulants from Water Treatment Plant Sludges (정수 슬러지로부터 알루미늄 응집제의 회수에 관한 연구)

  • Lee, Jae-Bok;Hwang, Jeong-Wuk;Kim, Jin-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.30-40
    • /
    • 1998
  • Increasing water consumption produced sludge problems of the water treatment plants. The objective of this study is to investigate aluminium coagulants recovery n acidic and alkaline conditions. Water treatment plant sludge produced in Pusan Metropolitan City were tested for the aluminium extraction process. Experiment samples were obtained in summer from water treatment plants of Deoksan and Myongjang. Aluminium coagulants used in these plants during the test period were polyaluminium chloride(PAC), polyaluminium sulfate organic(PSO), polyaluminium sulfate silicate(PASS). Aluminium contents of water treatment sludge were in the range of 7.2~10.9% of the total solids. The recovery percentages for aluminium and iron by acidic extraction method was evaluated to 88% and 42% respectively. Extracted mass variation for other materials such as iron, manganese, total organic carbon was observed during the extraction operation. Alkaline extraction produced more than two times amount of total organic carbon than that in the acidic extraction process.

  • PDF

Variations of Engineering Geological Characteristics of the Cretaceous Shale from the Pungam Sedimentary Basin in Kangwon-do due to Freezing-Thawing (강원도 횡성군 풍암분지 백악기 셰일의 동결-융해에 따른 지질공학적 특성 변화)

  • Jang Hyun-Shic;Jang Bo-An;Lee Jun-Sung
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.401-416
    • /
    • 2004
  • We have collected shale specimens from the Pungam Basin in Kangwon province and investigated change of physical properties by freezing and thawing in water as well as in acidic fluid. The temperature range was $-20{\pm}2^{\circ}C\~15{\pm}2^{\circ}C$. Specimens were frozen for 12 hours and thawed in water for 8 hours. Then, they were saturated in the vacuum chamber for 4 hours to make specimens fully saturated. This procedure was 1 cycle. We have measured absorption, ultrasonic velocity, shore hardness, slake durability and uniaxial compressive strength at every 5th cycles. The physical properties increased or decreased as freezing and thawing cycles increased. Uniaxial compressive strength decreased by 0.40MPa per cycle in water and by 0.48MPa in acidic fluid. Elastic constant also decreased by 0.21GPa per cycle in water and by 0.30GPa in acidic fluid. Absorption increased by $0.29\%$ and $0.37\%$ per cycle in water and acidic fluid, respectively. These results indicate that decrease in uniaxial compressive strength, elastic constant and absorption by freezing and thawing in acidic fluid is more rapid than in water. Ultrasonic velocities, shore hardness and slake durability show no differences in water and acidic fluid. When we compared our results with the temperatures in the Hongchon during the winter season, $6\~12$ cycles may be equivalent to 1 year.