• Title/Summary/Keyword: Acid-hydrolysis

Search Result 1,329, Processing Time 0.029 seconds

Enzyme Kinetic Study for Degradation of Phytic acid by Phytase (Phytase에 의한 phytic acid의 분해 반응속도 연구)

  • Kim, Jae-Seok;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.300-304
    • /
    • 2011
  • Phytases are hydrolytic enzymes that catalyze the sequential hydrolysis of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) to myo-inositols with lower numbers of phosphate groups. Two types of phytases have been identified which initiate hydrolysis of the phytic acid at either the 3- or 6- position of the inositol ring. In the present investigation, a mathematical model was proposed and computed to estimate maximum enzyme reaction rate constants which fit the experimental data obtained by other authors. Although the data points were scattered to some extent, good agreement was found between the model and the experiment data. It appears that the maximum rate constants of removal of the first, second, and third phosphate groups were not equal. Also there was neither a steady trend upward or downward in the rate constants with the stepwise hydrolysis reactions.

Dilute-acid pretreatment of rapeseed straw of using the combined severity (combined severity를 이용한 유체대의 묽은 산 전처리)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.2-244.2
    • /
    • 2010
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide into monomeric sugars. In this study, dilute sulfuric acid used as a catalyst for the pretreatment of rapeseed straw. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. Dilute-acid hydrolysis of rapeseed straw was optimized through the utilization of combined severity. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. In addition, this paper reports the compositional analysis of hydrolyzate liquors and solid residues, xylose and glucose mass balance closures, and digestibility results of the acid pretreated rapeseed straw.

  • PDF

Utilization of Ligno-cellulosic Biomass(II) - Saccharification of Exploded Wood by Acid Hydrolysis - (목질계(木質系) Biomass의 이용(II) - 폭쇄재(爆碎材)의 산가수분해(酸加水分解)에 의한 당화(糖化))

  • Yang, Jae-Kyung;Lee, Jong-Yoon;Chang, Jun-Pok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 1989
  • This study was performed to obtain the optimal condition that hydrolyzed exploded pine(Pinus densiflora), oak(Quercus serrata) and birch wood(Betula platyphylla var. japonica) by using sulfuric acid. The results obtained were summarized as follows: In hydrolysis of wood meal with sulfuric acid. maximum yield of sugar appeared that pine was 12 hours. oak and birch were 24 hours with 65% sulfuric acid. Futhermore, when wood meal and exploded woods were hydrolyzed with 65% sulfuric acid at $23^{\circ}C$ for 6 hours(primary hydrolysis), diluted to 3% and hydrolyzed again at $100^{\circ}C$ for 2 hours(secondary hydrolysis), the maximum sugar yield of wood meals were 6 hours. those of higher steam exploded pine wood was 3 hours. of lower steam exploded oak and birch woods were 6 hours. The sugar analyses of exploded wood showed that the amount of arabinose and xylose residue rapidly decreased. content of nemicelluose decreased with increase of steaming time and pressure.

  • PDF

Investigation of Polyimide Hydrolysis and Polyimide-Aluminum Interfaces (폴리이미드의 가수 분해와 Pl-알루미늄 계면 고찰)

  • Min, Nam-Ki;Chun, Jae-Hyung;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1216-1218
    • /
    • 1997
  • Hydrolysis of BTDA-ODA: MPDA, PMDA-ODA, PIQ polyimides were investigated by FT-IR. The results showed that hydrolysis depends on structure of polyimide and that polyimide obtains hydrolytic stability by curing. Polyimide-aluminum interfaces were characterized by RAIR. It was concluded that imidization of the polyamic acid to polyimde was inhibited by interaction of acid groups with substrate to form aluminum carboxylate.

  • PDF

Change of Hydrolysis Rate on Hydrogenated Palm Kernel Oil and Shea Butter Blendings Using In Vitro Digestion System (In Vitro Digestion에서 팜핵경화유와 시어버터 혼합 비율에 따른 가수분해율 변화)

  • Lee, Hyeon-Hwa;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this study, the hydrolysis rate of palm kernel oil (HPKO) and shea butter were compared by in vitro digestion to develop low-digestible fats. HPKO exhibited a higher hydrolysis rate than shea butter. The initial rate and ${\Phi}max$ value of HPKO were 0.315 mM/s and 78.0%, while the corresponding values for shea butter were 0.117 mM/s and 41.4%. When the two fats were blended at various ratios, the hydrolysis rate, in terms of the ${\Phi}max$ value, was similar to that of shea butter until 2:8 (HPKO : shea butter, w/w). After the analysis of triacylglycerol species and the positional fatty acid composition, the factors that affected the hydrolysis rate were determined. The results suggest that the low hydrolysis rate of shea butter would be due mostly to the stearic acid located at the sn-1,3 positions of triacylglycerol molecules. These properties of shea butter are expected to be the nutritional benefits as a low-digestible fat in foods.

Determination of Flavonoids, Tannins and Ellagic Acid in Leaves from Rubus L. Species

  • Gudej, Jan;Tomczyk, Michal
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1114-1119
    • /
    • 2004
  • This paper describes the quantitative determination of flavonoids, tannins and ellagic acid in the leaves from wild and cultivated variations of Rubus L. species (Rosaceae): raspberry (2 wild and 13 cultivars) and blackberry (3 wild and 3 cultivars). The content of flavonoids was analyzed using spectrophotometric (the Christ-M llers method) and HPLC analysis after acid hydrolysis. The content of tannins was determined by the weight method, with hide powder, described by German Pharmacopoeia 10 (DAB 10). Ellagic acid content was examined using the HPLC method after acid hydrolysis. Flavonoid content, determined using the Christ-Muller's method was higher for the blackberry leaves than for the raspberry leaves and varied between 0.46% and 1.05%. Quercetin and kaempferol were predominant in all samples analyzed using the HPLC method. The highest flavonoid content was found in the leaves of R. nessensis (1.06%); with results in all of the examined samples varying between 0.27% and 1.06%. The concentration of ellagic acid in all species was determined after acid hydrolysis and ranged from 2.06% to 6.89%. The leaves of raspberries are characterized by greater amounts of tannins (varying between 2.62% and 6.87%) than the leaves of other species. The results from this study indicate that the analyzed species are a rich source of flavonoids, ellagic acid and tannins, which may be used for the quality assessment of Rubus L. species leaves.

Preparation Of levan Oligosaccharides by Acid Hydrolysis and It Application in Growth of lactic Acid-producing Bacteria (산가수 분해법에 의한 레반 올리고당의 제조 및 유산군 생육촉진 효과 연구)

  • 강태호;정성제;강순아;강기효;장은경;김승환;김철호;이상기;전억한
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.137-141
    • /
    • 2002
  • Levan oligosaccoharides and low molecular weight levin were produced from levin by acid hydrolysis and following column chromatography. Levan hydrolysis was progressed proportionally as increased incubation time. In terms of levan hydrolysis reaction, no differences were found from the sources of levan. Optimum hydrolysis conditions for the formation of levan oligosaccharides were, 0.38 M H$_2$S0$_4$; and incubation at 95$\^{C}$ for 4 min. The purified products were determined as the mixture of oligosaccharides (degree of polymerization (DP) of 3-6), Two of lactic acid-producing bacteria, Lactobacillus plantarum KCTC 3104 and Pediococcus pentosaceus KCTC 3507, were studied in vitro for their ability to metabolize levin oligosaccharides. Apparently, the growth of both cells were increased by levin oligosaccharide diet, compared with those of levan diets, suggesting that levan oligosaccharides may be beneficial in selectively growth of lactic acid-producing bacteria.

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels (과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.619-623
    • /
    • 2014
  • The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Auto-hydrolysis of Lignocellulosics Under Extremely Low Sulphuric Acid and High Temperature Conditions in Batch Reactor

  • Tunde Victio Ojumu;Ba aku Emmanuel AttahDaniel;Eriola Betiku;Bamidele Ogbe Solomon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.291-293
    • /
    • 2003
  • Batch reactors were employed to investigate the kinetics of cellulose hydrolysis under extremely low acid (ELA) and high temperature condition. The sawdust was pretreated by Auto-hydrolysis prior to the batch reaction. The maximum yield of glucose obtained from the batch reactor experiment was about 70% for the pretreated sawdust, this occurred at 210 and 22$0^{\circ}C$. The maximum glucose yield from the untreated sawdust was much lower at these temperatures, about 55%. The maximum yields of glucose from the lignocellulosics were obtained between 15th and 20th minutes after which gradual decrease was observed.

Optimization of organosolv pretreatment with sulfuric acid for enhancing enzymatic hydrolysis of Pitch Pine (Pinus rigida)

  • Park, Na-Hyun;Kim, Hye-Yun;Gwak, Ki-Seob;Koo, Bon-Wook;Yeo, Hwan-Myeong;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.505-505
    • /
    • 2009
  • The object is to optimize the best condition of organosolv pretreatment process with sulfuric acid as a catalyst. As a material, Pitch pine (Pinus rigida) was ground and sieved through 40-mesh screen, and Celluclast and $\beta$-glucosidase were used as enzymes for enzymatic hydrolysis. Pretreatment processes were carried out in the minibomb, and 20 g of materials with 200 ml of 50% ethanol solution (v/v) with 1% sulfuric acid as a catalyst. Pretreatment temperature was varied from $150^{\circ}C$ to $190^{\circ}C$, and time was varied from 0 to 20 min. Then, residual materials were used for enzymatic hydrolysis. The best conditions were selected by estimating followed enzymatic hydrolysis rate and degradable rates after pretreatment process. The highest value of enzymatic hydrolysis rate was obtained as 55 - 60% at 160 and at $180^{\circ}C$, but the value decreased under more severe conditions. As the residual rates decreased under severe conditions, it infered that the decrease of sugar contents limits enzymatic hydrolysis rates. Combined with enzymatic hydrolysis rate, degradable rates and H-factors, the temperatures at $160^{\circ}C$ for 20 min and at $180^{\circ}C$ for 0 min were concluded as the optimized conditions where have the lowest H-factor value for considering energy input.

  • PDF