• Title/Summary/Keyword: Acid sulfate soil

Search Result 142, Processing Time 0.031 seconds

Effects of Simulated Acid Rain on Growth and Contents of Chemical Substances in Needles of Pinus koraiensis Seedlings and on Chemical Properties of the Tested Soil (인공산성우(人工酸性雨)가 잣나무 유묘(幼苗)의 생장(生長), 엽내함유성분(葉內含有成分) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • Simulated acid rain (pH 4.0, pH 2.0) containing sulfuric and nitric acid in the ratio of 60:40 (chemical equivalent basis) diluted with underground water, and underground water (pH 6.5) as control were treated on potted Pines koraiensis seeds during the growing season (May 1 to August 31) in 1985. The regime of artificial acid rain, in terms of spray frequency and amount per plot, was simulated on the basis of climatological data averaged for 30 years of records. The seedling growth, contents of chemical substances in needles and chemical properties of the tested soil were compared among the various pH levels of acid rain on October 31, 1985. Following results were obtained. 1. With decreasing pH levels of acid rain, S and $K_2O$ contents in leaf tissue were increased, but MgO and $P_2O_5$ contents were decreased. 2. Soil pH was dropped, and exchangeable aluminum content in the tested soil was dramatically increased as the pH levels of acid rain decreased. 3. Exchangeable calcium, magnesium, potassium contents, and base saturation degree of the soil were significantly decreased with decreasing pH levels of acid rain. 4. Sulfate concentrations in the soil were significantly increased as rain pH decreased, but total nitrogen and available phosphate contents were not influenced by acid rain.

  • PDF

Acidophilic Bacterial Communities of Soil and Enrichment Cultures from Two Abandoned Mine Sites of the Korean Peninsula

  • Mishra, Debaraj;Lee, Sun-Hee;Kim, Jae-Hee;Kim, Dong-Jin;Rhee, Young-Ha
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.265-273
    • /
    • 2011
  • Bacterial diversity based on the denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene sequences was determined for soil samples from two abandoned mine sites and the corresponding enrichment cultures using soil sample as key inoculum. Sequencing analysis of DGGE bands obtained from both the soil samples matched mostly with sequences of uncultured and newly described organisms, or organisms recently associated with the acid mine drainage environment. However, the enrichment of soil samples in ferrous sulfate and elemental sulfur media yielded sequences that were consistent with well-known iron- and sulfur-oxidizing acidophilic bacteria. Analysis of enrichment cultures of soil samples from Dalsung mine revealed abundant ${\gamma}$-$Proteobacteria$, whereas that of Gubong mine sample displayed acidophilic groups of ${\gamma}$-$Proteobacteria$, ${\alpha}$-$Proteobacteria$, $Actinobacteria$ and $Firmicutes$. Chemical elemental analysis of the mine samples indicated that the Dalsung site contained more iron and sulfate along with other toxic components as compared with those of the Gubong site. Biogeochemistry was believed to be the primary control on the acidophilic bacterial group in the enrichment samples.

Extraction of Cd and Pb from Soil by Anionic Surfactant and Ligand NaI (NaI 리간드화 계면활성제에 의한 토양내 Cd과 Pb 추출 연구)

  • Heo, Jung-Hyun;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.74-80
    • /
    • 2008
  • Heavy metals, Cd and Pb, in soil were extracted by using anionic surfactants such as AOS (alpha olefin sulfonate), SDS (sodium dodecyl sulfate), and LAS (linear alkyl benzene sulfonic acid). Metal extractability from soil was affected by the carbon number and solution pH of surfactants. LAS showed higher metal extractability due to the acidic solution condition. Although SDS has a fewer carbon number than AOS, it would produce smaller micelles and resulted in more efficient extraction of metals by increased soil contact. Cd extractability of surfactant was twice enhanced by adding NaI as a ligand. However, Pb extractability of surfactant was sometimes reduced by adding NaI. Those ligand effects were dependent on solubility of metal-ligand. The column experiment also showed that SDS having smaller micelles resulted in higher metal extractability than AOS.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent (과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향)

  • Choi, Jiyeon;Yoon, Na Kyeong;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.54-64
    • /
    • 2021
  • The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effective decontamination technology to remediate CWAs are needed. The CWAs are extremely dangerous and prodution is strictly prohibited, therefore, it is difficult to use CWAs even in experimental purpose. In this study, 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model representative CWA because it is a simulant of anti-plant CWAs and one of the major component of agent orange. The optimum degradation conditions such as oxidant:activator ratio were determined. The effects of hydroxylamine and chelating agents such as citric acid (CA), oxalic acid (OA), malic acid (MA), and EDTA addition to increase Fe2+ activation were also investigated. Scavenger experiments using tert-butyl alcohol (TBA) and ethanol confirmed that although both sulfate (SO4•-) and hydroxyl radical (•OH) existed in Fe2+-persulfate system, sulfate radical was the predominant radical. To promote the Fe2+ activator effect, the effect of hydroxylamine as a reducing agent was investigated. In chelating agents assisted Fe2+-persulfate oxidation, the addition of 2 mM of CA and MA enhanced 2,4-D degradation. In contrast, EDTA and OA inhibited the 2,4-D removal due to steric hindrance effect.

The Ecological Vegetation by the Neutralizing Treatment Techniques of the Acid Sulfate Soil (특이산성토의 중화처리기법에 따른 생태적 녹화)

  • Cho, Sung-Rok;Kim, Jae-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.47-59
    • /
    • 2019
  • This study was composed of four treatments [no treatment, phosphate + limestone layer treatment, phosphate + sodium bicarbonate + cement layer treatment, and phosphate + sodium bicarbonate + limestone layer treatment] for figuring out vegetation effects on the acid drainage slope. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: phosphate + sodium bicarbonate + limestone layer treatment, second: phosphate + sodium bicarbonate+cement layer treatment, third: phosphate + limestone layer treatment and fourth: no treatment] on the acid drainage slope. We found out that sodium bicarbonate treatment was additory effect on neutralizing acidity and increasing vegetaive growth besides phosphate and neutralizing layer treatments. In neutralizing layer treatments, Limestone layer was more effective for vegetation and acidity compared to cement layer treatment. Cement layer showed negative initial vegetative growth probably due to high soil hardness and toxicity in spite of acid neutralizing effect. Concerning plants growth characteristics, The surface coverage rates of herbaceous plants, namely as Lotus corniculatus var. japonicus and Coreopsis drummondii L were high in the phosphate + sodium bicarbonate + limestone layer treatment while Festuca arundinacea was high in the phosphate + sodium bicarbonate + cement layer treatment. We also figured out that soil acidity affected more on root than top vegetative growth.

Desorption of Heavy Petroleum Oils and Heavy Metals from Soils by Flushing Agents (세정제에 의한 복합오염토양으로부터의 중질유 및 중금속 탈착 특성)

  • Yun, Sung Mi;Kim, Gil Ran;Lim, Hee Jun;Kim, Han S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.94-103
    • /
    • 2014
  • In this study washing efficiency and desorption isotherms for heavy petroleum oil (HPO), Zn, and Pb bound to complex contaminated soils were examined using various soil flushing agents. Sodium dodecyl sulfate (SDS), methanol, ethylene diamine tetraacetic acid (EDTA), and citric acid were selected as soil flushing agents. 3% (w/v) and 4% SDS showed the highest removal efficiency for HPO, but the difference was not statistically significant (p > 0.05). Thus, 3% SDS was chosen as the best soil flushing agent for HPO. In the case of heavy metals, 0.1-M EDTA showed the highest removal efficiencies. But 0.05-M citric acid was selected due to its economic and eco-friendly strengths. The desorption isotherms obtained using Freundlich and Langmuir models indicated that the maximum desorption characteristics ($K_F$ and $Q_{max}$) of HPO with 4% SDS and 90% methanol and heavy metals with 0.1-M EDTA and 0.1-M citric acid, respectively, were markedly lower than in other cases. In addition, when 4% SDS and 90% methanol were used for HPO in the range of $C_e$ higher than 600 mg/L, and when 0.1M citric acid and 0.1M EDTA were used for Zn and Pb in the range of $C_e$ higher than 300 and 100 mg/L, respectively, the distribution constant converged to certain levels. Thus, constant values of $K_U$ and $K_L$ were determined. It was found that these constants represent the maximum desorption capacity and they can be used as distribution coefficients of desorption equilibrium for the flushing agents. The results of this study provided fundamental information for the selection of the best agents as well as for the process design and operation of soil washing/soil flushing of complex contaminated soils.

Degradation Pattern and Rate of Some Pesticides in Soils -Part II. Degradation Pttern and Rate of Thiolix in Soils- (토양처리(土壤處理) 농약제(農藥劑)의 분해율(分解率)에 관한 연구(硏究) -제2보(第二報). Thiolix의 토양중(土壤中) 분해(分解)에 대하여-)

  • Lim, Sun-Uk;Choi, Yong-Lak
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.248-254
    • /
    • 1983
  • The effects of some soil conditions on the degradation rate and decomposing pattern of thiolix were investigated and the obtained results are summarized as follows: Thiolix degraded more rapidly in flood soils than in noon-flooded, and in wet soils than in dry soils under non-flooded soils. The degradation rates in non-flooded soils increased with higher pesticide concentration. Thiolix was more persistent in non-flooded soils under soil sterelization than under non-sterilization and degraded rapidly in glucose application. The metabolites identified from the soils by TLC and GLC include Thiolix alcohol, Thiolix sulfate, Thiolix ether and a unknown metabolite. Soil enzyme, acid phosphatase activity decreased at higher pesticide concentration, lower moisture contents of soil and the activity in glucose application was increased. Soil enzyme, urease and dehydrogenase activity decreased at higher pesticide concentrations.

  • PDF

Genesis and Mineralogical Characteristics of Acid Sulfate Soil in Gimhae Plain -I. Transformation of Pyrite and Jarosite (김해평야(金海平野)에 분포(分布)한 특이산성토(特異酸性土)의 생성(生成)과 광물학적(鑛物學的) 특성(特性) -I. Pyrite와 Jarosite의 생성(生成))

  • Jung, Pil-Kyun;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.204-214
    • /
    • 1993
  • The purpose of this study was to elucidate the chemical changes and formation of sulfur minerals following reduction and subsequent oxidation of the acid sulfate soils derived from the fluvio-marine plains in Gimhae area. Changes in pH, Eh and water soluble $SO_4$, Fe, Al, K, na and Ca were determined in the soil under the reduced and oxidized conditions. These chemical properties were related to the formation of the pyrite and jarosite, the major sulfur minerals in the acid sulfate soils. On incubation, suspension pH tended to increase with decreaseing Eh in the reduction periods. Jarosite formation was favored by maintaining continuous low pH(below 4.0) and high Eh(above 400mV) during the oxidation periods, however, the conditions were not favorable for the soils with $Ca(OH)_2$. Water soluble K increased by reduction but decreased by oxidation, while the jarosite of the soil with $Ca(OH)_2$ was dissolved even under the oxidation conditon, resulting in rapid increase of water soluble K. The water soluble Ca decreased rapidly, indicating that gypsum was formed with $Ca(OH)_2$ during the oxidation periods. The formation of jarosite was favored by the oxidation condition, and hindered by the reduction condition. But the formation of pyrite was favored by reduction and hindered by oxidation. When the troll was treated with $Ca(OH)_2$, Jarosite was dissolved in both oxidized and reduced conditions.

  • PDF

Elution Patterns of Native Sulfate and Breakthough Curve′s of Anions from Bt Soils of Chungwon Series (청원통 Bt 토양에 내재된 황산이온의 용출특성과 음이온의 파쇄특성)

  • Chung Doug-Young;Jin Hyun-O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.190-197
    • /
    • 2000
  • Anions such as C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, P $O_4$$^{3-}$, and organic anions, that do not become a part of the clay mineral crystal lattice, are of considerable interest in soils which are a potential sink caused by acid rain. In this paper, elution of native sulfate and breakthrough curves (BTC) were obtained from miscible displacement of non-specifically or specifically adsorbed anions through non-saturated or saturated Bt soil of Chungwon series. The shape and position of the BTC's could be affected by adsoprtion and ion exchange onto the soil particle surfaces. Measured BTC's for oxalic acid under unsaturated and saturated conditions showed that less pore volumes were required to displace the native S $O_4$$^{2-}$S from the soil column, and that maximum detection limit of oxalic acid reached earlier than under unsaturated. The retarded BTC's to the righthand side could be attributed by different adsorption behavior of each anion, although BTC's may be influenced by the smaller order of velocity change. The alternate breakthrough and elution curves show the rapid approach to the maximum detection limit of C/Co = 1, compared to progressive tailing of elution curve to reach to C/Co = 0. The probable explanation for asymmetric elution patterns for both anion is that the anion was selectively adsorbed on the positively charged soil surface from the solution passing in the soil column. On the other hand, the variations of pH in effluent showed that pH was increased to 7 in the first 6 pore volume and then gradually decreased to pH 4.

  • PDF