• Title/Summary/Keyword: Acid mine drainage sludge

Search Result 28, Processing Time 0.029 seconds

Neutralization Treatment of Acid Mine Drainage Using Ca(OH)2 (소석회를 이용한 산성광산배수 중화처리)

  • Park, Young-Goo;Park, Joon-Seok;Hong, Seong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.391-396
    • /
    • 2005
  • This study was conducted to neutralize acid mine drainage (AMD) of Soo and Hambaek mines, located in Kangwon-Do Korea, using $Ca(OH)_2$. When 0.295 g $Ca(OH)_2/L$(AMD) was added to the drainage in a neutralization reactor, pH of liquid in the reactor and the effluent were maintained at 9.5 and 8.4, respectively. The pH met the required effluent standard. With 10~50% of feedback of effulent sludge to the reactor, the pH of neutralized fluid in the reactor remained nearly constant, but $SO{_4}^{-2}$ concentration in the effluent increased adversely compared to the non-return sludge case. With 30% of sludge feedback, it was possible to decrease suspended solids (SS) concentration in the effluent without a problem in Fe concentration. When 100 mL of 0.1 M $BaCl_2$ was added to 1 L of AMD treated with $Ca(OH)_2$, removal efficiency of $SO{_4}^{-2}$ increased to over 90%. Aanalyses of pH, Fe, and $SO{_4}^{-2}$ showed that the optimal results were obtained when pH of neutralizatio reactor and sludge return ratio were maintained at 9.5 and 30%. This can result in possible cost reduction of 31.4% for maintenance and 29.8% for facility construction by alternating $Ca(OH)_2$ to NaOH.

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Adsorption of Heavy Metals on Sludge from the Treatment Process of Acid Mine Drainage (산성광산배수(AMD) 처리(處理) 슬러지의 중금속(重金屬) 흡착(吸着) 특성(特性))

  • Song, Young-Jun;Lee, Gye Seung;Shin, Kang Ho;Kim, Youn-Che;Seo, Bong Won;Yoon, Si-Nae
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.35-43
    • /
    • 2012
  • This study was carried out for the purpose of obtaining basic data to utilize the AMD sludge as sorbent for heavy metal ions. The sludge from the treatment process of Acid Mine Drainage mainly consists of fine iron hydroxide or iron oxide hydrate and calcite, and the fine iron hydroxide or iron oxide hydrate has a property of adsorbing heavy metal ions. In this study, we investigated the physical property of the AMD sludge like as mineral composition, particle size and shape and chemical composition and also investigated the influence of dosage of sludge, adsorbing time, pH, initial concentration and sintering temperature on the adsorption of heavy metal ions.

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.

Effect of Chemical Amendments on Soil Biological Quality in Heavy Metal Contaminated Agricultural Field

  • Kim, Yoo Chul;Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Heavy metal pollution has been a critical problem in agricultural field near at the abandoned metal mines and chemical amendments are applied for remediation purpose. However, biological activity can be changed depending on chemical amendments affecting crop productivity. Main purpose of this research was to evaluate biological parameters after applying chemical amendments in heavy metal polluted agricultural field. Result showed that soil respiration (SR) and microbial biomass carbon (MBC) were changed after chemical amendments were applied. Among three different amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge(AMDS), AMDS had an effect to increase SR in paddy soil. Comparing to control ($93.98-170.33mg\;kg^{-1}day^{-1}$), average of 30% increased SR was observed. In terms of MBC, SS had an increased effect in paddy soil. However, no significant difference of SR and MBC was observed in upland soil after chemical amendment application. Overall, SR can be used as an indicator of heavy metal remediation in paddy soil.

Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil

  • Oh, Se Jin;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Ko, Tae Yol;Ji, Won Hyun;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Soil contamination with arsenic and heavy metals is a worldwide problem. Main objective of this research was to evaluated effects of reducing heavy metal leaching under reduced soil condition amended with industrial by-products. The contaminated soil was amended with 3% (w/w) of limestone (Ls), steel slag (SS) and acid mine drainage sludge (AMDS). Synthetic acid rain ($H_2SO_4:HNO_3=6:4$, pH 5.5 fixed) was used for feeding solution with flow rate of $0.78{\sim}0.88mL\;min^{-1}$. Results showed that similar pH and EC of leachate was observed in all treatments regardless of applied industrial by-products. However, arsenic concentration of leachate increased when industrial by-products were mixed. Meanwhile, concentration of heavy metal in the leachate decreased from 11.3 to 4.59 mg for Cd, from 92.3 to 7.93 mg for Pb, and from 11,716 to 1,788 mg for Zn via immobilization in soil with AMDS amended, respectively. Overall, application of industrial by-products can be an environmentally-friendly way to remediate soil and(or) leachate contaminated with metal(loid)s in metal mine site.