• Title/Summary/Keyword: Acid deposits

Search Result 95, Processing Time 0.023 seconds

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Characteristics and Improvement of Potential Acid Sulfate Soil Derived from Continental Materials on Alluvial Fan (선상지(扇床地) 육성(陸成) 잠재특이산성토(潛在特異酸性土)의 특성과 개량)

  • Jung, Yeun-Tae;Yun, Eul-Soo;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • A Potential acid sulfate soil derived from continental Holocene deposits on the fan-base was found and it was characterized with improvement practices. Artesian wells were scattered in the area, and the imperfectly drained soils were featured by having fine loamy with 7~30% of gravels. The potential acid sulfate soil layers were typified by having darkness in color with around 3.3~3.8% of O.M. and 0.34~0.41% of total sulfur. Soil pH ranged from 3.4 to 3.8 but it was decreased to 1.9~2.5 after oxidation with $H_2O_2$. Ground water sprang out from an artesian well contained a high amount of minerals such as Na, Ca, Mg, K, etc. and about 80ppm of sulfate which seemed to be responsible for pyrite formation. The soil was classified to member of "Fine loamy, mixed, acid, mesic, sulfic Haplaquepts" in taxonomically, and "weak potential acid sulfate soils" in interpretatively. The installation of tile drains with adding fine earth and liming were effective. However, the pH goes down to 4.8 again after 3 years of improvement practices.

  • PDF

An Investigation of Preferred Orientation and Microhardness of Nickel-Tin and Tin-Zinc Alloy Electrodeposits on Mild Steel (연강에서의 닉켈-주석과 주석-아연합금 전착층의 우성배향와 미소경도에 관한 연구)

  • Ahn, Deog-Su;Pyun, Su-Il
    • Journal of Surface Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.146-154
    • /
    • 1980
  • The effects of various electrodeposition conditions (deposition temperature and cathode current density) on preferred orientation and microhardness of electrodeposited Ni-Sn and Sn-Zn alloys were studied. At deposition temperatures from 25$^{\circ}$ to 95$^{\circ}C$ and constant cathode current density of 270 and 530 A/$m^2$ Ni-Sn and Sn-Zn were codeposited in chloride-fluoride acid and stannate-cyanide alkaline electrolyte bath respectively. Ni-Sn alloy deposited at temperatures from 25$^{\circ}$ to 35$^{\circ}C$ was composed of single phase of $Ni_3Sn_4$ with 73 wt.% Sn and the one deposited at temperatures from 45$^{\circ}$ to 95$^{\circ}C$ was made of multiphase mixture of NiSn, $Ni_3Sn_2$ and $Ni_3Sn_4$ with nearly equiatomic composition (65.5 wt.% Sn). The random orientation of thermody-namically metastable NiSn phase (hexagonal structure) predominated at deposition temperature range 25$^{\circ}$-45$^{\circ}C$, and the strong (110) preferred orientation was found at 65$^{\circ}$-85$^{\circ}C$ and then disappeared again at 95$^{\circ}C$. The microhardness of Ni-Sn deposits increased with deposition temperature up to 85$^{\circ}C$, and then decreased at constant cathode current density. The preferred orientation and the maximum microhardness were discussed in terms of lattice contractile stress which result from desorption of hydrogen atom absorbed in deposit lattice. The Sn content of Sn-Zn alloy deposits increased with deposition temperature up to 75$^{\circ}C$, and then decreased at constant cathode current density of 530 A/$m^2$. It also decreased with cathode current density up to 530 A/$m^2$, and then increased at constant deposition temperature of 25$^{\circ}C$. Sn-Zn alloy deposits were composed of two-phase mixture of ${beta}$-Sn and Zn. The preferred orientations of ${beta}$-Sn (tetragonal structure) changed with deposition temperature. The microhardness of Sn-Zn deposits decreased with deposition temperature. It also increased with cathode density up to 530 A/$m^2$, and then decreased at constant deposition temperature of 25$^{\circ}C$. The microhardness of Sn-Zn deposits was observed to be determinded more by the Sn content than by the preferred orientation.

  • PDF

Detection of Monosodium Urate Crystal of Hand and Wrist in Suspected Gouty Arthritis Patients on Dual-Energy CT and Relationship with Serum Urate Level (손과 손목의 통풍관절염에서 이중에너지 CT를 이용한 요산나트륨 결정 검출과 혈중 요산 농도와의 관계)

  • Hana Choi;Jeongah Ryu;Seunghun Lee;Yeo Ju Kim;Soyoung Bang
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.212-225
    • /
    • 2023
  • Purpose We retrospectively investigated the characteristics of patients with monosodium urate (MSU) deposits of the hand and wrist on dual-energy CT (DECT) compared to those without. We also attempted to determine the pattern of MSU distribution in DECT. Materials and Methods In total, 93 patients were included who had undergone DECT for evaluation of the hand or wrist pain under the clinical impression of gouty arthritis. The total volume of MSU deposits on DECT was calculated and the pattern of MSU distribution on DECT was analyzed. Also, the level of the serum urate at the time of DECT and the highest level of the serum urate of the patients were obtained from their records and the relationship between MSU and serum urate level was evaluated. Results The range of the volume of MSU deposits on DECT was 0.01-16.11 cm3 (average: 1.07 cm3). The average level of serum urate was significantly higher in the MSU positive group than that in the MSU negative group. MSU deposits were most frequently observed in the wrists followed by fingers and digitorum tendons. Conclusion On DECT, MSU deposits were most frequently detected in the wrist and related with high serum urate level.

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun;Choi, Jeong Hun;Yoo, Bung Uk;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.672-678
    • /
    • 2017
  • In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.

Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants (발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석)

  • Seung-Jun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.351-358
    • /
    • 2023
  • Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Preferred Orientation and Microstructure of Zinc Electrodeposit in acid Chloride Solution (우선배향과 두절경조직)

  • 예길촌;박계생;손경옥
    • Journal of Surface Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.173-187
    • /
    • 1983
  • Zinc was electrodeposited at temperature from 20$^{\circ}C$ to 60$^{\circ}C$ over the ranges of the current density from 2 to 20 A/dm2 in acid chloride bath. The cathode overpotentials increased with increasing current density and decreasing tem-perature. The (10$.$3)-(10$.$2) preferred orientation developed at cathode overpotentials below about 450mV, the (10$.$3)(10$.$2)-(10$.$1) texture developed at overpotentials between 500mV and 950mV, and the (00$.$1) (10$.$3) texture developed at cathode overpotentials about 1000mV. The (00$.$1) (10$.$3) preferred orientation was also formed at the lower potentials between 400mV and 850mV at temperatures above 40$^{\circ}C$. The preferred orientations of the zinc deposits was discussed was discussed with both cathode overpo-tential and surface energy of deposit lattice planes. The pyramid type of structure with macrostep developed at low cathode overpotentials and the truncated pyramidal type developed at higher overpotenial.

  • PDF

Gamma-Aminobutyric Acid and/or Carnitine Supplementation Alters Lipid and Some Immune Related Nutrient Levels in Mice

  • Soh, Ju-Ryoun;Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • This study investigated the effects of carnitine and/or ${\gamma}$ -aminobutyric acid (GABA) supplementation on lipid profiles and some immune related nutrient in mice. Balb/c male mice were orally treated with either an AIN-76 diet (Con), a control diet plus carnitine (CS, 0.5 g/kg bw), a control diet plus GABA (GS, 0.5 g/kg bw) or a control diet plus carnitine plus GABA (CGS, 0.25 g/kg bw, respectively) for 6 weeks. There were no significant differences in feed consumption, energy intake, body weight gain or feed efficiency ratio among the groups during the experimental period. However, abdominal fat deposits were smaller in CS, GS and CGS groups compared with the Con group. Serum and liver triglycerides also were lower in CS, GS and CGS and serum total cholesterol was significantly lower in the CGS group compared with the Con group. Serum LDL cholesterol was lower in the CGS group and liver HDL cholesterol was significantly higher in the CS group compared with Con group. In serum, stearic acid and selecholeic acid were lower, but arachidic acid was higher in the CS group. Liver stearic acid was higher but oleic acid lower in CGS group compared with Con group. In carnitine supplemented groups, serum and liver nonesterified carnitine (NEC), acidsoluble acylcarnitine (ASAC), total carnitine (TCNE) concentrations were higher in only the CS group, not CGS group. Serum vitamin A and E concentrations were not different among the groups. These results may suggest that carnitine and/or GABA supplementation improves lipid profiles in mice, but did not affect the immune-related nutrients that we measured under the experimental conditions of this study.

Electrodeposition of Silicon from Fluorosilicic Acid Produced in Iraqi Phosphate Fertilizer Plant

  • Abbar, Ali H.;Kareem, Sameer H.;Alsaady, Fouad A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • The availability, low toxicity, and high degree of technological development make silicon the most likely material to be used in solar cells, the cost of solar cells depends entirely on cost of high purity silicon production. The present work was conducted to electrodeposite of silicon from $K_2SiF_6$, an inexpensive raw material prepared from fluorosilicic acid ($H_2SiF_6$) produced in Iraqi Fertilizer plants, and using inexpensive graphite material as cathode electrode. The preparation of potassium fluorosilicate was performed at ($60^{\circ}C$) in a three necks flask provided with a stirrer, while the electro deposition was performed at $750^{\circ}C$ in a three-electrodes configuration with melt containing in graphite pot. High purity potassium fluorosilicate (99.25%) was obtained at temperature ($60^{\circ}C$), molar ratio-KCl/$H_2SiF_6$(1.4) and agitation (600 rpm). Spongy compact deposits were obtained for silicon with purity not less than (99.97%) at cathode potential (-0.8 V vs. Pt), $K_2SiF_6$ concentration (14% mole percent) with grain size (130 ${\mu}m$) and level of impurities (Cu, Fe and Ni) less than (0.02%).