• Title/Summary/Keyword: Acid catalytic conversion

Search Result 111, Processing Time 0.028 seconds

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction (Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구)

  • Park, Ji Hye;Baek, Jeong Hun;Hwang, Ra Hyun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst (설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응)

  • Kang, Hyo Yoon;Hwang, Dong Won;Hwang, Young Kyu;Hwang, Jin-Soo;Chang, Jong-San
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • A sulfonated activated carbon (AC-$SO_3H$) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-$SO_3H$ at 423.15 K. Although AC-$SO_3H$ possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-$SO_3H$, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-$SO_3H$, the turnover number of AC-$SO_3H$ was 4 times higher than the conventional two-step process using sulfuric acid.

Dehydration of Methanol to Dimethyl Ether over ZSM-5 Zeolite

  • Jiang, Shan;Hwang, Jin-Soo;Jin, Tai-Huan;Cai, Tianxi;Cho, Wonihl;Baek, Young-Soon;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.185-189
    • /
    • 2004
  • Methanol dehydration to dimethyl ether (DME) has been investigated over ZSM-5 zeolites and compared with that of ${\gamma}-Al_2O_3$. Although the catalytic activity was decreased with an increase in silica/alumina ratio, the DME selectivity increased. H-ZSM-5 and NaH-ZSM-5 zeolites were more active for conversion of methanol to DME than ${\gamma}-Al_2O_3$. $Na^+$ ion-exchanged H-ZSM-5 (NaH-ZSM-5) shows higher DME selectivity than H-ZSM-5 due to the selective removal of strong acid sites.

Novel Application of Platinum Ink for Counter Electrode Preparation in Dye Sensitized Solar Cells

  • Kim, Sang Hern;Park, Chang Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.831-836
    • /
    • 2013
  • Platinized counter electrode is common in most of the dye sensitized solar cell (DSSC) researches because of its high catalytic activity and corrosion stability against iodine in the electrolyte. Platinum (Pt) film coating on fluorine doped tin oxide (FTO) glass surface by using alcoholic solution of hexachloroplatinic acid ($H_2PtCl_6$), paste containing Pt precursors or sputtering are widely used techniques. This paper presents a novel application of Pt ink containing nanoparticles for making platinized counter electrode for DSSC. The characteristics of Pt films coated on FTO glass surface by different chemical methods were compared along with the performance parameters of the DSSCs made by using the films as counter electrodes. The samples coated with Pt inks were sintered at $300^{\circ}C$ for 30 minutes whereas Pt-film and Pt-paste were sintered at $400^{\circ}C$ for 30 minutes. The Pt ink diluted in n-hexane was found to a promising candidate for the preparation of platinized counter electrode. The ink may also be applicable for DSSC on flexible substrates after optimization its sintering temperature.

Synergistic Effects of Mo-V Based Mixed Oxide Catalysts for Acrolein Oxidation(I) (아크로레인 산화용 Mo-V 계 혼합산화물 촉매의 상승효과(I))

  • Na, Suk-Eun;Kim, Kyung-Hoon;Chung, Jong-Shik;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.717-721
    • /
    • 1992
  • Mechanical mixtures of vanadium molybdate and copper molybdate catalysts prepared by coprecipitation method, and those of $MoO_3$ and $V_2O_5$ were used to study the synergistic effects between each metal oxide for the selective oxidation of acrolein. The catalytic activity results revealed that the conversion of acrolein and yield of acrylic acid were increased with the mixture catalysts and it could be explained by a remote control mechanism. Thermal gravimetric analysis confirmed the evolution of lattice oxygen in the mixture catalysts.

  • PDF

The Nature of Acid-Catalyzed Acetalization Reaction of 1,2-Propylene Glycol and Acetaldehyde

  • Cheng, Chen;Chen, Hui;Li, Xia;Hu, Jianli;Liang, Baochen
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.463-467
    • /
    • 2015
  • We investigated catalytic activity of ion-exchange resins in acetalization of 1,2-propylene glycol with acetaldehyde. The impacts of reaction variables, such as temperature, reaction time, catalyst loading and feedstock composition, on the conversion of 1,2-propylene glycol were measured. The life of the catalyst was also studied. Furthermore, the reaction kinetics of 1,2-propylene glycol acetalization was studied. It was found that reaction rate followed the first-order kinetics to acetaldehyde and 1,2-propylene glycol, respectively. Therefore, overall acetalization reaction should follow the second-order reaction kinetics, expressed as. Key words: 1,2-propylene Glycol, 2,4-dimethyl-1,3-dioxolane, Ion-exchange Resin, Polyhydroxy Compounds, Acetalization $r=kC^{nA}_AC^{nB}_B=19.74e^{\frac{-6650}{T}}C^1_AC^1_B$.

Dehydrogenation of Ethylbenzene to Styrene with CO2 over TiO2-ZrO2 Bifunctional Catalyst

  • Burri, David Raju;Choi, Kwang-Min;Han, Sang-Cheol;Burri, Abhishek;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2007
  • In the dehydrogenation of ethylbenzene to styrene, CO2 could play a role as an oxidant to increase conversion of ethylbenzene and stability as well over TiO2-ZrO2 mixed oxide catalysts. TiO2-ZrO2 catalysts were prepared by co-precipitation method and were characterized by BET surface area, bulk density, X-ray diffraction, temperature programmed desorption of NH3 and CO2. These catalysts were found to be X-ray amorphous with enhanced surface areas and acid-base properties both in number and strength when compared to the respective oxides (TiO2 and CO2). These catalysts were found to be highly active (> 50% conversion), selective (> 98%) and catalytically stable (10 h of time-on-stream) at 600 oC for the dehydrogenation of ethylbenzene to styrene. However, in the nitrogen stream, both activity and stability were rather lower than those in the stream with CO2. The TiO2-ZrO2 catalysts were catalytically superior to the simple oxide catalysts such as TiO2 and ZrO2. The synergistic effect of CO2 has clearly been observed in directing the product selectivity and prolonging catalytic activity.

Cloning and Characterization of UDP-glucose Dehydrogenase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Park, Hye-Yeon;Park, Hae-Chul;Park, Sung-Ha;Kim, Sung-Kun;Kim, Young-Chang;Shin, Mal-shik;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1547-1552
    • /
    • 2009
  • Sphingomonas chungbukensis DJ77 has the ability to produce large quantities of an extracellular polysaccharide that can be used as a gelling agent in the food and pharmaceutical industries. We identified, cloned and expressed the UDP-glucose dehydrogenase gene of S. chungbukensis DJ77, and characterized the resulting protein. The purified UDP-glucose dehydrogenase (UGDH), which catalyzes the reversible conversion of UDP-glucose to UDPglucuronic acid, formed a homodimer and the mass of the monomer was estimated to be 46 kDa. Kinetic analysis at the optimal pH of 8.5 indicated that the $K_m\;and\;V_{max}$ for UDP-glucose were 0.18 mM and 1.59 mM/min/mg, respectively. Inhibition assays showed that UDP-glucuronic acid strongly inhibits UGDH. Site-directed mutagenesis was performed on Gly9, Gly12 Thr127, Cys264, and Lys267. Substitutions of Cys264 with Ala and of Lys267 with Asp resulted in complete loss of enzymatic activity, suggesting that Cys264 and Lys267 are essential for the catalytic activity of UGDH.

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15 (Amberlyst-15 촉매의 존재 하에서 올레산과 메탄올의 에스테르화 반응 속도식 연구)

  • Kim, Young-Joo;Kim, Deog-Keun;Rhee, Young Woo;Park, Soon-Chul;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.621-626
    • /
    • 2005
  • The esterification reaction of free fatty acid with methanol was investigated in the presence of catalyst, Amberlyst-15, producing fatty acid methyl ester, namely, biodiesel. In this paper, the effects of the reaction parameters such as reaction temperature, mole ratio of alcohol to oleic acid and mass of catalyst on the catalytic activity have been examined. The results showed that the reaction rate increased about twice as the temperature increased every $20^{\circ}C$ in the reaction temperature range from 333 K to 373 K. The equilibrium conversion rate of oleic acid increased with the feed mole ratio of alcohol to acid ranging from 6:1 to 44:1. When the feed mole ratio was higher than 44:1, all the results were similar to that of 44:1. As for the influence of the mass of catalyst, the initial reaction rate increased from 1.2 to 1.3 times as the mass of catalyst doubles in the range of the catalyst weight from 5 to 20 wt%. The experiment data obtained were well described by the second reaction rate using a pseudo-homogeneous model.