• Title/Summary/Keyword: Acid and Alkali

Search Result 584, Processing Time 0.029 seconds

Removal of Pb2+ ion from aqueous solution Using crab shell treated by acid and alkali (산-염기 처리한 게 껍질에 의한 수풍의 납 이온 제거)

  • 김동석
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.469-476
    • /
    • 2003
  • In order to examine the pre-treatment effect of crab shell en Pb$^{2+}$ removal by crab shell in aqueous solution, acid and alkali pre-treated crab shell were used. Electron microscopy techniques such as TEM (transmission electron microscopy) and SEM (scanning electron microscopy), and EDX (energy dispersive X-ray) and FTIR (Fourier transform infrared) spectrometry techniques were used to investigate the process of Pb$^{2+}$ removal by acid and alkali pre-treated crab shell. The Pb$^{2+}$ removal by acid pre-treated crab shell was much lower than that by untreated crab shell because of the decrease of CaCO$_3$ from the crab shell. However, the Pb$^{2+}$removal by alkali pre-treated crab shell increased compared to that by untreated crab shell. The results were confirmed by TEM, SEM, EDX and FTIR.nd FTIR.

Preparation of Conjugated Linoleic Acid Concentrate from Vegetable Oils by Alkali Isomerization (유지의 알칼리 이성질화에 의한 Conjugated Linoleic Acid 농축물의 제조)

  • Kim, Ji-Ho;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1453-1457
    • /
    • 1999
  • The optimal conditions of alkali isomerization to obtain conjugated linoleic acid (CLA) concentrate from vegetable oils which have antioxidant and anticarcinogenic properties were studied. The result of alkali isomerization of various vegetable oils indicated that CLA content of safflower oil which contains more linoleic acid than any other vegetable oils was the highest of all experimental vegetable oils. During alkali isomerization, the amount of cis-9, trans-11 CLA and total CLA content in safflower oil was the highest at $8{\sim}11%$ KOH concentration and $180{\sim}185^{\circ}C$. But heating time had no effect on CLA formation after $20{\sim}40$ minutes. As a result of alkali isomerization of neutral lipid, glycolipid and phospholipid in safflower oil, CLA content of neutral lipid class was higher than any other lipid classes. By urea treatment and HPLC fractionation, total CLA content in alkali-isomerized safflower oil increased to 95.4% from 78.9%.

  • PDF

Solvent Extractions of Alkali Metal Cations and Alkaline Earth Cations by Ionizable Crown Ether Phosphonic Acids (이온성 크라운에테르 포스포닉산에 의한 알칼리 금속 양이온과 알칼리 토금속 양이온의 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • A comparison of alkali metal cation and alkaline earth cation solvent extraction was made for three additional monoionizable crown ethers and one diionizable crown ether. sym-(n-Octyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ exhibited high efficiency and selecvity in solvent extraction of alkali metal cations with respect to that observed with alkaline earth cations. Sizes of $Na^+$ and $Ca^{2+}$ appropriately match with the cavity size of monoethyl sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{3}$. As the result, $Na^+$ and $Ca^{2+}$ are the best extracted. sym-(n-Octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid $\underline{4}$was found to be somewhat selective for $Na^+$ over $Li^+$ and other alkaline earth metal cations. In the complexation of alklaine earth cations by crown ether diphosphonic acid $\underline{4}$, $Ca^{2+}$ and $Sr^{2+}$ are the appropriate sizes, but lager $Ba^{2+}$ may be due to favorable formation of a sandwich type complex between the crown ether cavity and the dianion of the deprotonated crown ether phoaphonic acid moiety.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Rheological Properties of Heat-Induced Gels of Surimi from Acid and Alkali Process (산 및 알칼리 공정으로 조제한 수리미 가열 겔의 물성 특성)

  • Choi Young Joon;Park Joo Dong;Kim Jin Soo;Cho Young Jae;Park Jae W.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 2002
  • Rhtological properties of surimi gel from white fishes by acid (acid surimi) and alkali (alkali surmi) process and effect of chemicals on gelation were investigated by punch and dynamic tests. The breaking force and deformation values of heat-induced gel of acid surimi were less than their values of alkali and conventional surimi gel, and whiteness was greatly decreased, Gel point of acid surimi was decreased but it of alkali surimi was increased with increasing moisture content in the range of 80 to $85\%$. Storage modulus of acid surimi was the highest vaule in pH 6.8, but that of alkali surimi showed high value at neutral and slightly alkali pH. Propylene glycol increased storage modulus in $20\~50^{\circ}C$, hut urea and 2-mercaptoethanol suppressed it. Potassium bromide improved storage modulus in $20~80^{\circ}C$, The results suggest that alkai process is used for making surimi instead of conventional method.

Formation of Furans during the Acid Hydrolysis of Agar and Their Removal by Treatments of Lime, Steam-stripping and Hydrophobic Resins (한천의 산 당화에 의한 Furan화합물의 생성 및 제거)

  • Kim, Na-Hyun;Lee, Jae-Won;Seo, Yung-Bum;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2009
  • The ratio of saccharification and formation of furans during the acid hydrolysis of agar with oxalic acid and sulfuric acid were examined base on the contents of the agar and acids. The ratio of saccharification in oxalic acid appeared to be 51~59% somewhat higher than 49~61% of sulfuric acid. Formation of the furans during the acid hydrolysis increased proportional to the contents of agar and acid. The relative formation ratio was high 10~47% for furfural (FUR) and 15~29% for hydroxy-methyl furfural (HMF) in 0.5~1.25% sulfuric acid rather than those of oxalic acid. When comparing the removal efficiency of the furans using an alkali treatment, steam stripping and hydrophobic resins, FUR was eliminated 60% by the alkali treatment, 62~90% by steam stripping and 71~75% by Amberlite XAD4 and 7HP, while HMF was removed to low levels of 10.5%, 4~17% and 13~25%, respectively. The loss of reducing sugar was also observed in process of the removal of furans, and the loss rate was the level of 2~4% in alkali treatment, 11~16% in steam stripping and 7~9% in Amberlite resins.

  • PDF

Competitive Solvent Extraction of the Mixture of Alkali Metal and Alkaline Earth Metal Cation containing Crown Ether Carboxylic Acid and Crown Ether Phosphonic Acid (크라운에테르 카르복시산과 크라운에테르 포스포닉산을 포함한 알칼리 금속과 알칼리 토금속 양이온 혼합물의 경쟁적 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Competitive solvent extraction of the mixure of alkali metal and alkaline earth cation from water into organic solvent containing the crown ether carboxylic acid and anlogous crown ether phosphonic acid was investigated as follows. The lipophilic group is found to strongly influence to the selective extraction in the mixed systems from only alkali metal cation for sym-(n-decyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ to mostly alkaline earth metal cation for sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid $\underline{3}$. Monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{2}$. and monoethyl-sym- bis]4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{4}$ showed good selectivity for $Na^+$ over $Mg^{2+}$, the second extracted ion. Structural variation in the crown ether phosphonic acid somewhat was influenced to the extraction selectivity in the mixed systems. when variation of the ionized group is influenced in the mixed systems, the selectivity of $Na^+$ as the second extracted ion was much better crown ether carboxylic acid $\underline{1}$ than crown ether phosphonic acid $\underline{2}$, while the efficiency of $Na^+$ extraction was better $\underline{2}$ (83% total loading) than $\underline{1}$ (32%).

Modification of Wool Treated with Alkali and Alkali/CTAB (I) -Changes of chemical properties- (알칼리와 CTAB 처리에 의한 양모섬유의 개질(I) -화학적 성질의 변화-)

  • 김영리;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 1996
  • The purpose of this study is to investigate the change of the chemical properties of wool treated with six kinds of alkali (NaOH, Naac03, NH40H, NH2CH3CH30H, TMAH and BTMAH) with or without CTAB. Content of bound fatty acid liberated from wool surface, elemental composition and allw6rden time were measured to compare the surface modification of untreated and alkali treated wool. Also, the chemical degradation of the fiber was investigated by measuring cystine contents and urea-hydrogensulfite solubility. The result were as follows: 1. By the alkali treatment of wool, the covalently bound fatty acid of the epicuticle was removed and the allworden time was shortened, and in the case of wool treated with TMAH, BTMAH, the allw6rden sacs were formed unevenly and rarely. Also, cystine contents and urea-hydrogensulfite solubility were decreased by alkali treatment on wool. 2. The modification of epicuticle and the chemical degradation of wool were occurred due to alkaline hydrolysis in the order of TMAH, BTMAH > NaOH, Na3c03> NH2CH3CHaOH, NH40H. 3. As a treating time increased, the modification of epicuticle and chemical degradation of wool were accelerated. By the addition of CTAB to the alkali solution, the modification of epicuticle was increase, and the cystine contents and urea-hydrogensulfite solubility were reduced than that of wool teated with alkli without CTAB due to reduction of negative charge on the wool surface by the adhesion of CTAB.

  • PDF

Surface Treatment Technology for Metal Corrosion Layer Focusing on Copper Alloy

  • Yang, Eun-Hee;Han, Won-Sik;Choi, Kwang-Sun;Lee, Young-Hoon;Ham, Chul-Hee;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2014
  • Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, $H_2SO_4$ and $HNO_3$ solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition (알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.