• Title/Summary/Keyword: Acid Leaching

Search Result 398, Processing Time 0.026 seconds

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

Leaching of Molybdenite by Hydrochloric Acid Solution Containing Sodium Chlorate (NaClO3를 함유한 염산용액으로 몰리브데나이트광의 침출)

  • Nguyen, Thi Nhan Hau;Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.26-33
    • /
    • 2022
  • Molybdenum is widely used in many materials; thus, its recovery from ores and secondary resources has attracted considerable attention. In this study, the leaching of molybdenite ore using hydrochloric acid containing sodium chlorate as an oxidizing agent was studied. The effects of several variables, such as the concentrations of HCl and NaClO3, reaction temperature and time, and pulp density, on the leaching of the ore were investigated. Under strong acidic and oxidizing conditions, the sulfide in the ore was dissolved as a sulfate ion, which formed gypsum with Ca(II), leading to a decrease in the leaching percentage of Mo(VI) from the ore. The leaching percentage of molybdenum was greater than 90%, while those of iron, calcium, and silicon were 38, 29, and 67%, respectively, under the optimum conditions: 2.0 M HCl, 0.5 M NaClO3, pulp density of 5 g/L, temperature of 90 ℃, and treatment time of 60 min.

Hydrochloric Acid Leaching of Arsenic from Arsenic-Bearing Copper Slime. (동전련 부산물인 함비소 동슬라임으로부터 염산에 의한 비소의 침출)

  • 유용주;황필규
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 1992
  • The hydrochloric acid leaching has been studied as a fundamental experiment on the recovery of arsenic from arsenic-bearing copper slime in copper electrorefining. The slime is mainly composed of $\beta-Cu_3As$ Which is intermetallic compound of CU and As. And the minor components are $CU_2O$ and CusAs in the slime. The optimum conditions of leaching of the slime were found to be as follows : 6N hydrochloric acid, particle size passed through 140 mesh, leaching for 150 min at $60^{\circ}C$, ratio of HCI/slime of 3 to 1 ; where 98 percent of arsenic were leached out of the As-bearing slime.

  • PDF

Treatment and Recovery of Valuable Materials from Aluminum Dross by Leaching (침출에 의한 알루미늄 드로스의 처리 및 유용성분의 회수)

  • Nguyen Thi, Thuy Nhi;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.77-84
    • /
    • 2017
  • White and black dross are resulted from the recycling of aluminum. There are no established processes to recover valuable materials from black dross. Hydrometallurgical processes seem to be suitable for the treatment of aluminum dross. The salts in the black dross are recovered by dissolving with water. The residues are treated by either alkaline or acid leaching. Although the leaching rate of alumina by NaOH is lower than that by acid, its intermediates are more suitable to the production of alumina-based materials. The future direction for the treatment and recovery of valuable materials from aluminum dross is discussed.

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

Leaching of Gold and Silver from Anode Slime with Inorganic Reagents (양극슬라임으로부터 무기침출제에 의한 금과 은의 침출)

  • Xing, Wei Dong;Lee, Ki Woog;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • Leaching experiments of anode slime were performed with several inorganic acids (HCl, $HNO_3$ and $H_2SO_4$) together with thiourea and thiosulfate solution to recover gold and silver. Gold was not dissolved at all into these inorganic acids in the absence of any oxidizing agents. At the same concentration of inorganic acid, the leaching of percentage of Ag was the highest in the sulfuric acid solution. The leaching percentage of silver increased with the increase of HCl concentration owing to the formation of $AgCl_2{^-}$. Copper, nickel and zinc except tin was almost dissolved in these inorganic acids but no tin was dissolved in nitric acid solution. Most of Au and Ag were dissolved into the mixture of sulfuric acid and thiourea solution. Thiosulfate could dissolve some silver from the anode slime but no gold was dissolved by this agent.

Recovery of Molybdenum and Vanadium from Acidic Leaching Solution of Spent Catalysts by Solvent Extraction (폐촉매(廢觸媒) 산성침출액(酸性浸出液)으로부터 용매추출(溶媒抽出)에 의한 몰리브덴과 바나듐의 회수(回收))

  • Nguyen, Hong Thi;Lee, Man Seung
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2013
  • The recovery of molybdenum and vanadium from acid leaching solutions of spent catalysts using solvent extraction has been investigated. Among various acid leaching solutions, sulfuric acid solution is found to be adequate for the recovery of these two metals. The extraction and stripping behavior of the two metals in the absence and presence of other impurity metals by various types of extractants such as cationic, solvating, amine and a mixture of cationic and solvating extractants was discussed. Each type of extractants has advantage and disadvantage in terms of the possibility of separation and of forming a third phase. Among the various types of extractants, a mixture of cationic and solvating extractants seems to be the most promising extractant system for the separation of Mo and V from the acid leaching solutions of spent catalysts.

Leaching Behaviour of vanadium from Orimulsion ash (오리멀젼회로부터 바나듐 침출특성에 관한 연구)

  • Park Kyung-Ho;Yoon Seung-Han;Nam Chul-Woo;Choi Yeung-Ki;Yoon Oh-Seub
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Recently, Orimulsion (a bitumen-in emulsion) has received increasing attention as an alternative fuel. Orimulsion combusion produces an ash rich in V, Ni and Mg which are processed to recover metals. As a basic study to recover V from Orimulsion ash, physico-chemcial properties and leaching behaviours were investigated. Orimulsion ash was fine size grains ($d_{50}$ 5.9 $\mu\textrm{m}$) with 16% V, 4 % Ni and 9% S. Vanadium was easily leached in water because Orimulsion ash was mainly constituted of metal sulfates. However, the increase of leaching temperature decreased the extraction percentage of vanadium because of hydrolysis of V(V) to vanadium pentoxide. The addition of sulfuric acid could increase the leaching percentage vanadium. In case of alkaline leaching for selective recovery of vanadium, the oxidzing agent such as $H_2$$O_2$ is required to improve the leaching per-centage

Caustic Soda Decomposition and Leaching of Monazite in Hong-Cheon Area Deposit. (홍천산 모나자이트의 가성소다 분해 및 침출)

  • Kim Joon-Soo;Yoon Ho-Sung;Kim Sung-Don;Kim Chul-Joo;Lee Jin-Young
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, treatment conditions for monazite concentrate in Hong-Cheon area deposit were studied with NaOH fritting decomposition and HCl leaching experiments. At condition of NaOH fritting decomposition, it was appropriate to adopt particle size of -200 mesh monazite, reaction temperature of about $460^{\circ}C$ and NaOH/TREO mole ratio of 6. In case of HCl leaching for decomposed product, it was appropriate to use hydrochloric acid of above 8N with leaching temperature of above $80^{\circ}C$, leaching time of 2 hrs and pulp density of about 10%. A rate of decomposition and leaching for monazite was above 90% under optimum conditions. Sodium phosphate compound was effectively recovered from NaOH decomposed solution, and mixed rare earth chloride solution was prepared with HCl leaching of decomposed product.