• Title/Summary/Keyword: Acid Hydrolysis

Search Result 1,329, Processing Time 0.028 seconds

Anti-diabetic mechanism of melania snail (Semisulcospira libertina) protamex hydrolysates (다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구)

  • Pyo, Sang-Eun;Choi, Jae-Suk;Kim, Mi-Ryung
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • Melania snail (Semisulcospira libertina) was traditionally used as the healthy food in Korea. It was generally known to improve liver function and heal a diabetes. The aim of this study was to elucidate the anti-diabetic mechanism of melanian snail hydrolysates treated with protamex (MPH) by investigating the inhibitory action on protein tyrosine phosphatase 1B (PTP1B), the improving effect on the insulin resistance in C2C12 myoblast and the protective effect for pancreatic beta-cell (INS-1) under the glucose toxicity. The melania snail hydrolysates treated with protamex (MPH), which showed the highest degree of hydrolysis (43%), and inhibited effectively PTP1B activity ($IC_{50}=15.42{\pm}1.1{\mu}g/mL$), of which inhibitory effect was higher than usolic acid, positive control ($IC_{50}=16.65{\mu}g/mL$). MPH increased the glucose uptake in C2C12 myoblast treated with palmitic acid. In addition, MPH increased insulin mRNA expression level by over 160% with enhanced cell viability in INS-1 cell under the high glucose concentration (30 mM). These results suggest that MHP may improve the diabetic symptom by the inhibiting the PTP1B activity, increasing the glucose uptake in muscle cell and protecting the pancreatic beta-cell from glucose toxicity.

Determination of 3-phenoxybenzoic Acid in Urine and Exposure Assessment of Pyrethroid Insecticides to Human Being (요중 3-phenoxybenzoic acid 미량 분석 및 pyrethroid계 살포자 노출 평가)

  • Seo, Jong-Chul;Song, Jae-Seok;Choi, Hong-Soon
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Pyrethroid insecticide have widely been used for agricultural sector and residential environments. To assess the exposure of insecticide which is absorbed through skin the analysis of urinary metabolite is essential. At present, the urinary 3-PBA was analyzed using liquid-phase extraction. But LPE have many limitations, such as long pre-treatment time and low recovery. So, this study was conducted to determine the optimum conditions for analysing 3-PBA in urine using solid phase extraction. Furthermore, this study intend to investigate the relation of concentrations of pyrethroid, deltamethrin in air and 3-PBA in urine. The optimum condition for hydrolysis was found to be done with hydrochloric acid for one hour. The recovery rates of 3-PBA were $84.6%{\pm}1.2%$, $54.8{\pm}0.9%$, $99.8{\pm}1.2%$ with XAD-2, XAD-7, XAD-16 using as the aborbents and acetone as eluents respectively. But acetonitrle and methanol gave low recovery rate and methyl cellosolve could not elute the compound. The amount of acetone for elution were 6mL, 9mL, 3mL for XAD-2, XAD-7, XAD-16 as absorbents respectively. The non-absorbed rates was $0.8{\pm}0.5%$, and $0.7{\pm}0.3%$ under XAD-16, mesh size 140-200, amount of resin 1.4g and the flow rate of eluent was 0.1mL/min. In the concentration process, we obtained 11 times higher concentration of material. The amounts of urinary 3-PBA were. The LODs of 3-PBA and deltamethrin were 0.004 mg/L, 0.038 mg/L, respectively. The further research of minute monitoring which include spray pattern, environmental condition is needed And more research about the relation between total pyrethroid exposure and urinary various metabolite are also necessary.

Preparation and Quality Characteristics of Enzymatic Salt-fermented Pearl Oyster, Pinctada fucata martensii (효소분해 진주조개(Pinctada fucata martensii) 젓갈의 제조 및 품질특성)

  • Kim, In-Soo;Kim, Hye-Suk;Han, Byoung-Wook;Kang, Kyung-Tae;Park, Jeong-Min;Oh, Hyeun-Seok;Han, Gang-Uk;Kim, Jin-Soo;Heu, Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • As a part of the investigation for utilizing pearl oyster by-products, a rapid salt-fermented pearl oyster using commercial enzyme was prepared and also examined on the characteristics. The salt-fermented pearl oyster prepared by optimal condition, which was prepared by mixing of minced pearl oyster, 15% salt, and 1% $Protamex^\circledR$ and fermented for 4 weeks, was superior in hydrolysis degree (28.7%) and ACE inhibitory activity (92.6%) to salt-fermented pearl oyster prepared by other conditions, such as the use of whole tissue, different enzymes $(Alcalase^\circledR,\;Neutrase^\circledR\;and\;Flavourzyme^\circledR)$, different salt concentrations (20 and 25%), and different fermentation periods (2, 6 and 8 weeks). There were, however, some shortcomings with this product. It showed a dark green color and an unfavorable bitter taste. These shortcomings were improved by the addition of seasoning paste. The calcium and phosphorus contents of the seasoned salt-fermented pearl oyster were 64.2 mg/100 g and 71.6 mg/100 g, respectively, and the calcium content based on phosphorus was a good ratio for absorbing calcium. The total amino acid content of the seasoned and salt-fermented pearl oyster was 7,054 mg/100 g and the major amino acids ware aspartic acid (555.1 mg/100 g), glutamic acid (1,131.2 mg/100 g), alanine (658.2 mg/100 g), and lysine (695.5 mg/100 g). The seasoned salt-fermented pearl oyster, along with angiotensin I converting enzyme (ACE) inhibitory activity (98.3%), also showed a recognizable level (87.5%) of anti-oxidative activity.

Production and Characterization of Cyclodextrin Glucanotransferase fronm Bacillus sp. JK-43 Isolated from Kimchi (김치 분리균인 Bacillus sp. JK-43이 생산하는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Baik, Hyung-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • A bacterial strain, designated as JK-43, producing extracellular cyclodextrin glucanotransferase (CGTase)[EC 2.4.1.19] was isolated from kimchi. The CGTase from isolated strain JK-43 showed the transglucosylation activity from soluble starch to L-ascorbic acid(AA) compared to those obtained from other strains. A main product formed by this reaction was identified as $2-O-{\alpha}-glucopyranosyl$ L-ascorbic acid(AA-2G) by testing its susceptibility to ${\alpha}-glucosidase$ hydrolysis, the HPLC profiles, and through the elementary analysis. the ${\beta}-CD,\;{\gamma}-CD$, potato starch and corn starch were identified to be suitable glucosyl donor for transglucosylation reaction on AA by CGTase. Acceptor specificity on AA-2G production was examined by use of AA, Iso-AA and AA-2P. Transglucosylation was observed toward AA-2P as well as AA and Iso-AA. The microorganism isolated from kimchi was identified as a strain of Bacillus sp. JK-43 based on the morphological, cultural, biochemical characteristics and partial 16SrDNA sequence analysis. The maximal CGTase production was observed in a medium containing 1.0% soluble starch, 1.0% yeast extract, 1.0% $Na_2CO_3\;0.1%\;K_2HPO_4,\;and\;0.02%\;MgSO_4{\cdot}7H_2O$ with initial pH 7.0. The strain was cultured at $37^{\circ}C$ for 26 hrs with reciprocal shaking.

  • PDF

A Study on the Optimum Conditions of Gelatin-Degrading Proteolytic Enzyme Production from Bacillus subtilis B0021 (Bacillus subtilis B0021가 생산하는 Gelatin 분해성 Proteolytic Enzyme 생산의 최적의 연구)

  • 백대헌;이항우복성해
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.374-385
    • /
    • 1995
  • Nutritional requirements and cultural conditions for the production of extracellular gelatin-degrading proteolytic enzyme by Bacillus subtilis B0021 were investigated. Optimum carbon source for proteolytic enzyme production was salicin, but it was substituted by glucose for economical reason. The fermentation medium giving a maximum proteolytic enzyme activity was consisted of 1.5%(w/v) glucose, 2.5%(w/v) yeast extract, and 0.001%(w/v) manganese sulfate and 0.002%(w/v) ferrous sulfate. Proteolytic enzyme activity of B. subtilis B0021 was completely inhibited by 0.5%(w/v) tannic acid. Initial pH was optimal at 7.0 and the enzyme activity in the flask culture usually reached a maximal level after 36 hours of fermentation at $30^{\circ}C$. In the $5\ell$ fermentor fermentation at $30^{\circ}C$, enzyme activity was maximum at 36 hour of cultivation but after this enzyme activity was decreased rapidly. Initial viscosity of 45%(w/v) gelatin(2,800mPas) was decreased rapidly to 96%(mPas) after hydrolysis for 4hr at $40^{\circ}C$ by crude enzyme of B. subtilis B0021.

  • PDF

Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases (효소적 가수분해에 의한 홍게껍질 단백질의 특성)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, So-Hee;Seo, Young-Wan;Song, Young-Sun
    • Journal of Nutrition and Health
    • /
    • v.45 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • This study was performed to examine the characteristics of protein of red crab (Chionoecetes japonicus) shell powder hydrolyzed by commercial proteases. Red crab shell was digested by commercial proteases, such as Protamex (P), Neutrase (N), Flavourzyme (F), Alcalase (A), Protease M (PM) and Protease A (PA). Protein yield analyzed by Biuret assay, absorbance at 280 nm and brix revealed that PA was the enzyme having the highest proteolytic activity. SDS PAGE showed that molecular weight of proteins produced by protease treatments was various and below 150 kDa. Combinational treatment of proteases (PA + P, PA + PM, PA + F, PA + A) was tried whether these increase protein hydrolysis from red crab shell powder compared to a PA single treatment. Soluble protein content was similar, but amino acid concentration by combinational treatments was higher than PA single treatment [PA + P 247.4 mg/g > PA + F (206.4 mg/g) > PA + A (133.4 mg/g) > PA + PM (59.1 mg/g) > PA (54.9 mg/g)]. Amino acid composition by combinational treatments was slightly different. Most abundant essential amino acids were phenylalanine, glycine, alanine, and leucine, whereas tyrosine and cystine were not detected.

Manufacture and Characterization of Silkworm Gland Hydrolysate (누에 실샘 가수분해물의 제조 및 특성 규명)

  • Hwang, Jung Wook;Lee, Heui Sam;Kim, Hojin;Kim, Kyu-Oh;Choi, Yong-Soo
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.76-81
    • /
    • 2012
  • Silk protein has been explored to be used for biomedical applications for several decades. However, it has not been used in this field cause to their irreversible crystallization after dissolving in water. The existing methods of silk protein hydrolysis using silkworm cocoon were used with harmful solvents and through a very complicated process. Therefore, we have developed novel methods for the production of water-soluble hydrolysate using silkworm gland. We manufactured two types of silkworm gland-derived hydrolysate (water-soluble SGH, SSGH; total SGH, TSGH) and compared the characteristics with commercial cocoon-derived sericin hydrolysate (CSH). The molecular weight of SGH ranged from 7 to 50 kDa (SSGH) and 5 to 15 kDa (TSGH) within glycine, alanine, and aspartic acid as a main amino acid composition. In contrast, CSH ranged from 15 to 50 kDa within serine and aspartic acid. The results of FTIR implied that SGH was more soluble form than CSH, as shown by the decrease in the ${\beta}$-sheet structure at $1630cm^{-1}$ on amide I peak. In comparison with 10% fetal bovine serum, 0.1% (1 mg/ml) SSGH had equivalent effect on the proliferation of human dermal fibroblasts and mesenchymal stem cells. All results of the SSGH made by novel manufacturing process indicate the SSGH is more preferable as a culture medium supplement than cocoon-derived sericin.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Cell Protective Effects of Enzymatic Hydrolysates of Citrus Peel Pectin (귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과)

  • Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Pectin, a naturally occurring polysaccharide, has in recent years attracted considerable attention. Its benefits are increasingly appreciated by scientists and consumers due to its safety and usefulness. The chemistry and gel-forming characteristics of pectin have enabled to be used in pharmaceutical industry, health promotion and treatment. Yet, it has been rarely used in cosmetics because of its incompatibility with many cosmetic ingredients, including alcohols, and unstable viscosity of pectin gels under various pH and salt conditions. However, low-molecular-weight pectin oligomers have excellent biological activities, and depolymerization of pectin to produce cosmetic ingredients would be very useful. In this study, we attempted the development of cosmetic ingredients using pectin with an excellent effect on human skin. We developed a bio-conversion process that uses enzymatic hydrolysis to produce pectin hydrolysates containing mainly low-molecular-weight pectin oligomers. Gel permeation chromatography was used to determined the ratio of hydrolysis. The molecular weight of the pectin hydrolysates obtained varied between 200 and 2,700 Da. The two newly developed low-molecular-weight pectin hydrolysates, LMPH A and B, had higher anti-oxidative activities than pectin or D-galacturonic. Exposure to UVB radiation induces apoptotic cell death in epidermal cells. Annexin V binding and propidium iodide uptake were measured by flow cytometry to evaluate UVB-induced cell death in HaCaT cells. Both LMPH A and B reduced UVB-induced cell death and increased cell proliferation by 22% and 30% at 0.5% concentration respectively, while pectin had no significant activity. In conclusion, this study suggests that the newly developed low-molecular-weight pectin hydrolysates can be used as safe and biologically active cosmetic ingredients.

Kinetics and Mechanism of Alkalie Hydrolysis of Cinnamonitrile (II) (Cinnamonitrile의 알카리 가수분해(加水分解) 반응(反應)메카니즘 (II))

  • Sung, Nack Do;Chung, Woo Jin;Kwon, Ki Sung;Park, Byung Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.354-364
    • /
    • 1983
  • Confonmation of (Z)-cinnamonitrile have been studied by molecular orbital theoretically using extended Huckel theory(EHT) and CNDO/2 molecular orbital calculation methods. The results indicate that the stability of conformation is(Z)-gauch>(Z)-planar. The rate constants for alkalie hydrolysis of cinnamonitrile at pH 7.0-14.0 range have been determined by ultra-violet spectrophotometry in 50% methanol at $25^{\circ}C$ and the following rate equation which can be applied over wide pH range was obtained; $${\therefore}k=({\frac{1.41{\times}10^{-14}+1.21{\times}10^7/[H_3O^+]}{2.65{\times}10^{-7}+1.64/[H_3O^+]})+9.14{\times}10^9/[H_3O^+]$$ The rate equation reveals that, at pH 7.0-10.0, the reaction is initiated by the addition of water molecule to unsaturated cabon-carhon double bond of cinnamonitrile and ${\alpha}C-{\beta}C$ bond scission follow subsequently in neutral and alkalie media. At pH 12.0-14.0, in strong alkalie solution, that so-called Michael type nucleophilic addition that the over-all rate constants is only dependent upon the concentration of hydroxide ion occurs competitively and are very complicated. Hence, the reaction mechanism of alkalie hydrolysis of cinnamonitrile which did not carefully before can be fully explained.

  • PDF