• Title/Summary/Keyword: Acicular ferrite

Search Result 96, Processing Time 0.025 seconds

A Study on the Mechanical Properties of Duplex Stainless Steel Weldment According to Mo Contents

  • Bae, Seong Han;Lim, Hee Dae;Jung, Won Jung;Gil, Woong;Jeon, Eon Chan;Lee, Sung Geun;Lee, Hyo Jong;Kim, In Soo;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.645-651
    • /
    • 2012
  • This study investigated changes in phase fraction caused by the addition of Mo, as well as the subsequent behaviour of N and its effect on the mechanical properties of welded 24Cr-N duplex stainless steel weld metals. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 1.4, 2.5, 3.5 wt%. The delta ferrite fraction increased as the Mo content increased. In contrast, the ${\gamma}$ fraction decreased and changed from a round to an acicular shape. Secondary austenite (${\gamma}^{\prime}$) was observed in all specimens in a refined form, but it decreased as the Mo content increased to the extent that it was nearly impossible to find any secondary austenite at 3.5 wt% Mo. Both tensile and yield strengths increased with the addition of Mo. In contrast, the highest value of ductility was observed at 1.41 wt% Mo. At all temperatures, impact energy absorption showed the lowest value at 3.5 wt% Mo, at which the amount of ${\delta}$-ferrite was greatest. There was no significant temperature dependence of the impact energy absorption values for any of the specimens. As the fraction of ${\gamma}$ phase decreased, the amount of N stacked in the ${\gamma}$ phase increased. Consequently, the stacking fault energy decreased, while the hardness of ${\gamma}$ increased.

Hydrogen Diffusion in APX X65 Grade Linepipe Steels

  • Park, Gyu Tae;Koh, Seong Ung;Kim, Kyoo Young;Jung, Hwan Gyo
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Hydrogen permeation measurements have been carried out on API X65 grade linepipe steel. In order to study the effect of steel microstructure on hydrogen diffusion behavior in linepipe steel, the accelerated cooling condition was applied and then three different kinds of microstructures were obtained. Hydrogen permeation measurement has been performed in reference to modified ISO17081 (2004) and ZIS Z3113 method. Hydrogen trapping parameters in these steels were evaluated in terms of the effective diffusivity ($D_{eff}$), permeability ($J_{ss}L$) and the amount of diffusible hydrogen. In this study, microstructures which affect both hydrogen trapping and diffusion were degenerated pearlite (DP), acicular ferrite (AF), bainite and martensite/austenite constituents (MA). The low $D_{eff}$ and $J_{ss}L$ mean that more hydrogen can be trapped reversibly or irreversibly and the corresponding steel microstructure is dominant hydrogen trapping site. The large amount of diffusible hydrogen means that corresponding steel microstructure is predominantly reversible. The results of this study suggest that the hydrogen trapping efficiency increases in the order of DP, bainite and AF, while AF is the most efficient reversible trap.

Evaluation of Weldability on Identical and Dissimilar Welding Parts of Austenite Stainless Steel by GTAW (오스테나이트 스테인리스강에 대한 가스텅스텐 아크용접 시동종 및 이종 용접부의 용접성 평가)

  • Han, Min-Su;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.68-74
    • /
    • 2011
  • This papers investigated the mechanical characteristics and the weldability of identical as well as dissimilar welding by GTAW for STS 304 and STS 316L. It is applied to double wall gas pipe of duel fuel engine for LNG carrier. Consequently, the weldability of dissimilar and identical welded zone of STS 304 decreased compared to base metal significantly. The result of microstructure observation for welded zone, a degree of acicular ferrite in welding zone for STS 304 presented more than STS 316L. The hardness of welding zone for STS 304 presented higher value than that for STS 316L by this effect.

The effect of Heat input, Shielding Gas(Ar80% + $CO_2$20%), PWHT on the mechanical properties of HSB600 steel Weldments (HSB600강 용접에서 입열량, 보호가스, 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향)

  • Ju, Dong-Hwi;Lim, Young-Min;Kim, Nam-Hoon;Koh, Jin-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.394-397
    • /
    • 2011
  • The effects of heat input(1.4~3.2kJ/mm), shielding gas(Ar80%+$CO_2$20%) and postweld heat treatment(PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and CVN impact energy of as-welded specimens decreased with increasing heat input. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high inputs. High performance steel for bridges requires higher performance in tensile and yield strength, toughness, weldability, etc. Thus, the purpose of the experiment is to study HSB 600 in GMAW.

  • PDF

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

Effect of Heat Input and Interpass Temperature on the Strength and Impact Toughness of Multipass Weld Metal in 570MPa Grade Steel (570MPa급 용접구조용강 다층 용접금속의 강도 및 충격인성에 미치는 입열 및 패스간 온도의 영향)

  • Byun, Ji-Chul;Bang, Kook-Soo;Chang, Woong-Sung;Park, Chul-Gyu;Chung, Woo-Hyun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • 570MPa grade weldable steels were gas metal arc welded with various heat inputs and interpass temperatures using flux cored wires. Effects of heat input and interpass temperature on the strength and impact toughness of weld metal were investigated in terms of microstructural change, recovery of alloying elements, and the amount of reheated weld metal. Increase of heat input and interpass temperature resulted in decrease of weld metal strength. This is because of the small amount of acicular ferrite, large columnar size and low recovery of alloying elements such as manganese and silicon. In addition to the microstructural change, weld metal toughness was also influenced by the deposition sequence. It increased with an increase of the amount of reheated weld metal.

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Effect of Heat Input on Girth Welds Properties of High Strain Steel Pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.25-30
    • /
    • 2009
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

Effects of Mo and Nb on Tensile and Charpy Impact Properties of API X80 Linepipe Steels (API X80 라인파이프 강의 인장 및 샤르피 충격 특성에 미치는 Mo 및 Nb의 영향)

  • Min, Kyung-Zoon;Bae, Jin-Ho;Kim, Ki-Soo;Lee, Doh-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.766-773
    • /
    • 2011
  • In this study, three kinds of linepipe steels were processed by changing the amount of Mo and Nb to investigate the effects on microstructures, tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite and secondary phases such as martensite and austenite constituents (MA). The increase in Mo raised the volume fractions of the granular bainite and MA, and raised the number of fine precipitates, which increased the yield and tensile strengths and decreased the upper self energy and energy transition temperatures. In the steel having less Mo and more Nb, the volume fractions of the granular bainite and MA decreased, and a finer microstructure was observed. This microstructure suppressed the formation of separation during Charpy impact testing and led to a higher upper shelf energy and lower energy transition temperature, while the yield and tensile strengths were lower than those of the steels with more Mo and less Nb.

Effects of Mn and Heat-input on the Mechanical Properties of EGW Welds (일렉트로 가스 용접부의 기계적 성질에 미치는 Mn 및 입열량의 영향)

  • Kim, Nam In;Jeong, Sang Hoon;Lee, Jeong Soo;Kang, Sung Won;Kim, Myung Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.195-201
    • /
    • 2009
  • This paper is concerned with effects of Mn and heat-input on the mechanical properties of EGW welds. Four different kinds of welding consumables were fabricated by varying Mn contents such as 1.3, 1.5, 1.7, 2.0%Mn and each consumable was welded for EGW on four heat-input conditions between 190 and 340 KJ/Cm. Mn contents were decreased as heat-input increases and alloy elements (C, Si, Ti, B, Al) to deoxidize easily also revealed similar tendency to Mn. Their microstructure, Charpy impact property and strength were investigated, and it is found that Charpy impact property and strength exhibit a strong dependence on change of microstructure by Mn contents and heat-input. The increase of Mn contents or the decrease of heat-input made the microstructure fine and increase volume fraction of acicular ferrite, thereby leading to the great improvement of Charpy impact property and strength. In case of single EGW, optimum Mn contents are over 1.7% for the toughness and strength.