• Title/Summary/Keyword: Acetosolve

Search Result 2, Processing Time 0.016 seconds

Preperation of Carbon Fiber from Acetosolve Lignin (Acetosolve Lignin으로부터 Carbon Fiber의 제조)

  • Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.21-26
    • /
    • 1997
  • Lignin viscous material was prepared from acetosolve lignin by phenolation and heat treatment. The yield of phenolation was about 160% with p-toluene sulfonic acid(2% of acetosolve lignin) as catalyzer. Phenolated lignin has a good spinnability and thermosetting property by $300^{\circ}C$ treatment with vaccum. Acetosolve lignin carbon fiber has $20{\pm}5$ m diameter and $68.2{\pm}10\;kg/mm^2$ tensile strength. The yield of carbon fiber based on acetosolve lignin was 31%.

  • PDF

Synthesis of Aromatic and Aliphatic Compound from Kraft Oak Lignin and Acetosolve Straw Lignin by Thermochemical Liquefaction (참나무 크라프트 리그닌과 볏짚 아세토솔브 리그닌의 열-화학적 분해에 의한 방향족(Aromatic)과 지방족(Aliphatic)화합물의 합성)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Kraft oak lignin and ricestraw lignin from acetosolve pulping were dissolved in 50/50 mixture of tetralin/m-cresol solvent. The dissolved lignin was reacted in the pressurized autoclave which was operating at $350{\sim}500^{\circ}C$ of reaction temperature and 10~20 atms of reaction pressure respectively_Hydrogen pressure of 60~80kg/$cm^2$ was exercising into the pressurized autoclave reactor to create thermochemical hydrogenolysis reaction. It was identified by GLC, GC-MS and HPLC that the alkyl-aryl-${\beta}$-O-4 ether bond of lignin was cleaved and degraded into various smaller molecules of aromatic compound such as phenols and cresols under the reaction conditions around $300^{\circ}C$ and 10 atms of reaction temoerature and pressure. Hydrogenolysis reaction of lignin compound which was done above $500^{\circ}C$ of reaction temperature and 20 atms of reaction pressure showed that the amount of aromatic compound such as phenols and cresols degraded from reactant lignin was decreasing with newly present and increasing water out of product mixtures. It was supposed that new aliphatic compound of high molecular weight hydrocarbon is composed due to higher reaction temperature and pressure of hydrogenolysis reaction such as $500^{\circ}C$ and 20 atms, even though it was almost impossible, to identify what kind of degraded products it was by HPLC.

  • PDF