• Title/Summary/Keyword: Acetolactate synthase isozyme

Search Result 4, Processing Time 0.014 seconds

The Properties of Acetolactate Synthase Isozyme Produced by Serratia marcescens ATCC 254 19 (Serratia marcescens ATCC 25419가 생산하는 Acetolactate Synthase Isozyme의 특성)

  • 김종탁;김승수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 1992
  • One acetolactate synthase isozyme which has Rf value of 0.83 on polyacrylamide gel electrophoresis was purified from Sewatia marcescens ATCC 25419 by ammonium sulfate fractionation, DEAE-Sephacel chromatography, Phenyl-Sepharose chromatography, Sephacryt S-400 gel filtration followed by native gel elution. The native molecular weight of the enzyme was determined to be 531,400 by gel filtration method, and SDS-polyacrylamide gel electrophoresis separated the native enzyme into two polypeptides having molecular sizes of 55,000 and 38,900 respectively. In kinetic parameters, $K_m$ value for pyruvate was 2.54 mM, and $V_{max}$ was 21.75 nmoie/min/mg. The enzyme showed maximal activity around pH 8.0 and optimal temperature of the acetolactate formation was $37^{\circ}C$. Feedback inhibition studies indicate that the purified enzyme is rather resistant to branched chain amino acids when compared with acetolactate synthase isozymes of plants or other enterobacteria.

  • PDF

Effect of Pyrimidylsalicylate on the Valine Sensitive Acetolactate Synthase Purified from Serroatia marcescens

  • Yang, Jeong-Hee;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • The inhibitory effect of herbicides such as sulfonylurea derivatives, imidazolinones and pyrimidylsalicylate has been examined on the purified valine sensitive acetolactate synthase (ALS) from Serratia marcescens. The concentration of sulfometuron methyl which inhibits 50% of the ALS activity was 2.5 mM. The required concentrations of triasulfuron, primisulfuron methyl and imazaquin for the 50% inhibition of the ALS activity were 1 mM. The resistance of Serratia ALS to sulfometuron methyl, imazapyr and imazaquin is similar to that of E. coli ALS 1. However, pyrimidylsalicylate showed a potent inhibitory effect on the Serratia ALS almost 13 times more potent than on E. coli ALS II, which is known as herbicide-sensitive isozyme. The inhibitory mode was competitive against pyruvate. 150 value was determined to be $17{\mu}M$ in an assay mixture containing 20 mM pyruvate, and the $K_1$, value was calculated to be $0.4{\mu}m$ from the modified double reciprocal plot of 1/V versus $1/S^2$.

  • PDF

Purification and Characterization of the Catabolic α-Acetolactate Synthase from Serratia marcescens

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • The catabolic ${\alpha}$-acetolactate synthase was purified to homogeneity from Serratia marcescens ATCC 25419 using ammonium sulfate fractionation, DEAE-Sepharose, Phenyl-Sepharose, and Hydroxylapatite column chromatography. The native molecular weight of the enzyme was approximately 150 kDa and composed of two identical subunits with molecular weights of 64 kDa each. The N-terminal amino acid sequence of the enzyme was determined to be Ala-Gln-Glu-Lys-Thr-Gly-Asn-Asp-Trp-Gln-His-Gly-Ala-Asp-Leu-Val-Val-Lys-Asn-Leu. It was not inhibited by the branched chain amino acids and sulfometuron methyl herbicide. The optimum pH of the enzyme was around pH 5.5 and the pI value was 6.1. The catabolic ${\alpha}$-acetolactate synthase showed weak immunological relationships with recombinant tobacco ALS, barley ALS, and the valine-sensitive ALS isozyme from Serratia marcescens.

  • PDF

Characterization of Two Forms of Acetolactate Synthase from Barley

  • Yoon, Jong-Mo;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.456-461
    • /
    • 2003
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target site for several classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. Two forms of ALS (designated ALS I and ALS II) were separated from barley shoots by heparin affinity column chromatography. The molecular masses of native ALS I and ALS II were determined to be 248 kDa and 238 kDa by nondenaturing gel electrophoresis and activity staining. Similar molecular masses of two forms of ALS were confirmed by a Western blot analysis. SDS-PAGE and Western blot analysis showed that the molecular masses of the ALS I and ALS II subunits were identical - 65 kDa. The two ALS forms exhibited different properties with respect to the values of $K_m$, pI and optimum pH, and sensitivity to inhibition by herbicides sulfonylurea and imidazolinone as well as to the feedback regulation by the end-product amino acids Val, Leu, and Ile. These results, therefore, suggest that the two ALS forms are not different polymeric forms of the same enzyme, but isozymes.