• Title/Summary/Keyword: Acetate buffer

Search Result 207, Processing Time 0.038 seconds

Assessment of chemical purity of [13N]ammonia injection: Identification of aluminium ion concentration

  • Kim, Ho Young;Park, Jongbum;Lee, Ji Youn;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • $[^{13}N]$Ammonia or $[^{13}N]NH_3$ is one of the most widely used PET tracer for the measurement of MBF. To produce $[^{13}N]NH_3$, devarda's alloy which contains aluminum, copper and zinc is used for the purpose of reduction from $^{13}N$-nitrate/nitrite to $[^{13}N]NH_3$. Since aluminum has neurotoxicity and renal toxicity, the amount of it should be carefully limited for the administration to the human body. Although USP and EP provide a way to identify the aluminum ion concentration, there are some difficulties to perform. Therefore, we tried to develop the modified method for verifying aluminum concentration of test solution. We compared color between test and standard solutions using chrome azurol S in pH 4.6 acetate buffer. We also tested color change of test and standard solutions according to pH, amounts and the order of reagent and time difference These results demonstrated that the color change of the solution can reflect quantitatively measure aluminum ion concentration. We hope the method is to be used effectively and practically in many sites where $[^{13}N]NH_3$ is produced.

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis

  • Oh, Gyo Won;Kang, Yewon;Choi, Chang-Yun;Kang, So-Yeong;Kang, Jung-Hyun;Lee, Min-Jae;Han, Nam Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.

Effects of rumen-protected amino acid prototypes on rumen fermentation characteristics in vitro

  • Gyeongjin, Kim;Tabita Dameria, Marbun;Jinhyun, Park;Sang Moo, Lee;Hong Gu, Lee;Jun Ok, Moon;Jin Seung, Park;Eun Joong, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.669-679
    • /
    • 2021
  • This study was conducted to evaluate the effects of rumen-protected amino acid (RPAA) prototypes, which were chemically synthesized, on in vitro rumen fermentation and protection rate outcomes. Several RPAA prototypes were incubated with timothy hay and concentrate. Treatments consisted of 1) control (CON; no RPAA prototype supplement), and prototypes of 2) 0.5% RP-methionine (RPMet), 3) 0.5% RP-tryptophan (RPTrp), 4) 0.5% RP-valine (RPVal), 5) 0.5% RP-phenylalanine (RPPhe), 6) 0.5% RP-leucine (RPLeu), 7) 0.5% RP-histidine (RPHis), 8) 20% RPMet, and 9) 20% RPTrp (w·w-1 feed). The inoculum (50 mL) prepared with rumen fluid and McDougall's buffer (1 : 4) was dispensed in individual serum bottles and was anaerobically incubated for 0, 6, and 24 h at 39℃ in triplicate. The dry matter degradability did not differ among the groups, except for the 20% RPMet and the 20% RPTrp treatments at 6 and 24 h. The total volatile fatty acid concentration in the 20% RPMet was higher (p < 0.05) than the rest of the groups at 6 h, and 20% RPMet showed the highest molar proportion of acetate, whereas the lowest proportion of propionate was found at 6 h (p < 0.05). The protection rate of the RPAA prototypes ranged from 29.85 to 109.21%. at 24 h. In conclusion, the chemically synthesized RPAA prototypes studied here had no detrimental effects on rumen fermentation parameters. Further studies using animal models are needed for more accurate evaluations of the effectiveness of RPAA.

Effects of Saponin Contained Plant Extracts on Ruminal Fermentation Characteristics and Methane Production (Saponin 함유 식물 추출물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Ok, Ji-Un;Baek, Youl-Chang;Kim, Kyoung-Hoon;Lee, Sang-Cheol;Seol, Yong-Joo;Lee, Kang-Yeon;Choi, Chang-Weon;Jeon, Che-Ok;Lee, Sang-Suk;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • This study was conducted to evaluate the effects of saponin contained plant extracts on in vitro rumen fermentation characteristics and methane production. Ruminal fluid was collected from rumen cannulated Hanwoo steers fed rice straw and concentrate (5:5). Collected rumen fluids, corn starch and buffer including saponin contained plant extracts (ginseng, Ogapi, soapwort, tea plant and yucca; 0.5%/15 ml) were incubated at $39^{\circ}C$ for 24 h. All incubations were repeated five times. Rumen pH in all treatments was lower (p<0.05) compared with that of the control (no addition) during incubation time. The concentration of total VFA in all treatments was higher (p<0.05) than that of the control after 12h incubation. Compared with the control, the concentration of acetate and propionate in all treatments was lower and higher after 6h incubation, respectively. The concentration of $NH_3$-N in all treatments was lower (p<0.05) than that of the control except for Ogapi or yucca extracts supplementation. The number of protozoa in all treatments was significantly (p<0.05) lower than that of the control except for soapwort extract supplementation. The total gas production and methane production in all treatments was higher (p<0.05) and lower (p<0.05) compared with the control, except for ogapi or soapwort extracts supplementation after 12h incubation, respectively. Therefore, reduction in methane production by saponins may could be results from decreased protozoal population without any negative in vitro fermentation.

Effects of Nitrate-rich Plant Extracts on the in vitro Ruminal Fermentation and Methane Production (질산염 화합물 함유 식물 추출물이 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Kim, Min Sung;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.95-105
    • /
    • 2016
  • This study was conducted to evaluate the effects of nitrate-rich plants extracts on the in vitro rumen fermentation characteristics and rumen methane production. The extracts of nitrate-rich plants, as potato, carrot, chinese cabbage, lettuce and spinach were used in this study. The ruminal fluid was collected from a cannulated Hanwoo cow fed concentrate and timothy in the ratio of 6 to 4. The 20mL of mixture, comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically 50mL serum bottles containing 0.3g of timothy substrate and extracts of nitrogen-rich plants. The serum bottles were incubated 39℃ for 9, 12, 24, 48 hours. The pH value was decreased by increased incubation times and normal range to 6.31 to 6.96. The dry matter digestibility was significantly(p<0.05) lower in chinese cabbage than in control at 9h incubation time. Ammonia concentration was significantly(p<0.05) lower in potato, chinese cabbage, lettuce than in control and the rumen microbial growth rate was significantly(p<0.05) higher in carrot than in control at 24h incubation time. The concentrations of acetate and propionate was significantly(p<0.05) lower in treatment than in control. The concentration of butyrate was showed a different pattern depending on treatments. Total gas emissions was significantly(p<0.05) lower in chinese cabbage, lettuce, spinach than in control at 12h, 24h incubation time. Methane production was significantly(p<0.05) lower in potato, chinese cabbage, spinach than in control, carbon dioxide production was significantly(p<0.05) lower in treatment than in control. In conclusion, supplementation of the nitrate-rich plant extracts in ruminal fermentation in vitro resulted in decreasing the methane production without adversely affecting the fermentation characteristics. Particularly the chinese cabbage extract was regard as a potential candidate for reducing the methane emission in ruminants.

Expression and Purification of Three Lipases (LipAD1, LipAD2, and LipAD3) and a Lipase Chaperone (LipBD) from Acinetobacter schindleri DYL129 (Acinetobacter schindleri DYL129 유래의 3개 lipases와 chaperone의 발현과 정제)

  • Kim, Sun-Hee;Lee, Yong-Suk;Jeong, Hae-Rin;Pyeon, Hyo-Min;You, Ju-Soon;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.492-498
    • /
    • 2019
  • Previously, three kinds of lipases, lipAD1, lipAD2, and lipAD3, and lipase chaperone, lipBD, of Acinetobacter schindleri DYL129 isolated from soil sample were reported. In this report, three lipase and lipase chaperone were cloned into the pET32a(+) or pGEX-6P-1 vectors for protein expression in Escherichia coli, and named as pETLAD1, pETLAD2, pETLAD3 and pETLBD or pGEXLAD1, pGEXLAD 2, pGEXLAD3 and pGEXLBD, respectively. Protein expression rate was higher in pET system than in pGEX system. Although LipAD1 and LipAD2 were produced as inclusion bodies, their expression levels were high. So LipAD1 and LipAD2 could be solubilized in 8 M urea buffer and purified. LipAD3 and LipBD were overexpressed in soluble form and purified. Those proteins were purified by His-tag affinity chromatography connected in AKTA prime system. The activities of the purified lipases were demonstrated with 1% tributyrin agar plate. After purification, molecular mass was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. LipAD1 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl butyrate, LipAD2 showed high activity toward ${\rho}$-nitrophenyl acetate and ${\rho}$-nitrophenyl myristate, and LipAD3 showed high activity toward ${\rho}$-nitrophenyl acetate, ${\rho}$-nitrophenyl butyrate, and ${\rho}$-nitrophenyl miristate, respectively. Three lipases, LipAD1, LipAD2, and LipAD3, showed optimal reaction at $50^{\circ}C$ using ${\rho}$-nitrophenyl butyrate, as substrate.

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF

Development of Yeast-Vector System for Eukaryotic Gene Cloning - Optimum Condition for Intact Yeast Cell Transformation and Plasmid Stability in the Transformants - (진핵생물 유전자 조작을 위한 효모 vector계 이용에 관한 기초연구 -생효모 형질전환 최적조건과 숙주별 plasmid안정성에 관하여 -)

  • 기우경;조성환;김범규;조무제
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.125-131
    • /
    • 1986
  • In order to obtain the optimum conditions for intact yeast cell transformation in the various yeast host-vector systems, 3 yeast plasmid vectors, YRp7, YEpl3 and YIp5 were introduced into 5 yeast hosts, Saccaromyces cervisiae Dl3-1A, DKD-5D, DBY-746, MC-16 and S2022D with various transformation conditions, and plasmid stabilities in all the transformants were also observed. The highest transformation frequencies in all the host-vector system were obtained in the 16 hour Cultured cell (5.4 $\times$ 10$^6$ - 2.4 $\times$ 10$^8$cells/$m{\ell}$) treated with 0.1-0.2 M lithium chloride in 0.1 M tris-HCl (pH 7.6), 35% polyethylene glycol 4000, and heat-shocked at 42$^{\circ}C$ for 5 minutes after 60 minutes of induction. The intact cell transformation got more transformation frequency in DKD-5D (YRp7) and DBY-746 (YEpl3) than protoplast transformation, but reverse tendency was observed in DKD-5D (YEp13) and Dl3-lA (YRp7). The transformants, D13-1A (YRp7) and DKD-5D (YRp7) were very unstable in selective medium, with 80 to 85% of the transformants losing the plasmid after 70 generations, but the transformants, DKD-5D (YEpl3) and DBY-746 (YEpl3) were quite stable, with 35% of the transformants losing the plasmid.

  • PDF

Validation of LC-MS/MS Method for Determination of Rabeprazole in Human Plasma : Application of Pharmacokinetics Study (인체 혈장중 라베프라졸의 정량을 위한 LC-MS/MS 분석법 검증 및 단일 용량 투여에 의한 약물동태 연구)

  • Tak, Sung-Kwon;Seo, Ji-Hyung;Ryu, Ju-Hee;Choi, Sang-Joon;Lee, Myung-Jae;Kang, Jong-Min;Lee, Jin-Sung;Hong, Seung-Jae;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.73-78
    • /
    • 2009
  • A simple LC-MS/MS method of rabeprazole in human plasma was developed and validated. Rabeprazole and Internal standard (I.S), omeprazole, were extracted from human plasma by liquid liquid extraction, chromatographic separation of rabaprazole in plasma was achieved at $45^{\circ}C$ with a Shiseido UG120 $C_{18}$ column and methanol-10 mM ammonium acetate buffer (pH 9.42 with ammonium water), as mobile phase. Rabeprazole produced a protonated precursor ion [$(M+H)^+$] at m/z 360.10 and corresponding product ion at m/z 242.21. Internal standard produced a protonated precursor ion [$(M+H)^+$] at 346.09 and corresponding product ion at m/z 198.09. This method showed linear response over the concentration range of $1{\sim}500\;ng/mL$ with correalation coefficient greater than 0.99. The lower limit of quantitation (LLOQ) using 0.2 mL plasma was 1 ng/mL, which was sensitive enough for pharmacokinetics studies. The method was specific and validated with a limit of quantitation of 1 ng/mL. The intra-day and inter-day precision and accuracy were acceptable for all samples including the LLOQ. The applicability of the method was demonstrated by analysis of plasma after administration of a single 10 mg dose to 36 healthy subject. From the plasma rabeprazole concentration versus time curves, the mean $AUC_t$ (The area under the plasma concentration-time curve from time 0 to 12 hr ) was $691.36{\pm}321.88\;ng{\cdot}hr/mL$, $C_{max}$ (maximum plasma drug concentration) of $353.21{\pm}131.52\;ng/mL$ reached $3.4{\pm}1.1\;hr$ after adiministration. The mean biological half-life of rabeprazole was $1.37{\pm}0.75\;hr$. Based on the results, this simple method could readily be used in pharmacokinetics studies.