• Title/Summary/Keyword: Acetamiprid

Search Result 61, Processing Time 0.041 seconds

Control System of Whitefly, Trialeuodes vaporariorum, in Cucumber by the Alternate Application of Insecticides within Each Conventional Group (오이에서 살충제 계열내 교호처리에 의한 온실가루이 방제 체계)

  • 정부근;손경애
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.327-335
    • /
    • 2001
  • In order to establish a whitefly control system using conventional groups of insecticide(carbamate, organophosphorus and pyrethroid insecticides), three alternative application methods were designed on the medium growth stage of cucumber. To discriminate the effectiveness of these sequences observed were the residual activity of insecticides, frequency of insecticide applications, residue of insecticides in cucumber leaves, development of insecticide resistance in whitefly, and yield of fruits. Spraying furathiocarb, a carbamate insecticide, was very effective in reducing the frequency of application for the control of white flies. The effectiveness of furathiocarb was enhanced by the potentiation process to carbofuran, the long residual activity, and the lower development rate of insecticide resistance. Methion, an organophosphorus insecticide, did not show resistance development after successive use but resulted in short residual activity. However, other organophosphates, profenofos and phenthoate, lost their activity by the resistance development. Decreasing activity was common to pyrethroids, deltamethrin and zetacypermethrin due to resistance. From these results it could be drawn a conclusion that furathiocarb, a carbamate insecticide, was the most desirable among conventional insecticide groups for the management of greenhouse whitefly population on the cucumber. To prevent an outbreak of the insect pest by various cause, it was recommended to choose acetamiprid, a nicotinoid, which showed very good control efficacy to the resistance insects to conventional insecticides.

  • PDF

Chemical control of Sycamore Lace Bug, Corythucha ciliata(Say) (버즘나무방페벌레의 약제방제(藥劑防除)에 관(關)한 연구(硏究))

  • Kim, Chul-Su;Park, Ji-Doo;Byun, Byung-Ho;Park, Il-Kwon;Chae, Chung-Suck
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.384-388
    • /
    • 2000
  • For the control of Corythucha ciliata, the insecticidal activity of five commercial pesticides (Monocrotophos 25%SL, Phosphamidon 50%SL, Imidacloprid 20%DC, Thiamethoxam 15%DC and Acetamiprid 20%SL) were examined with trunk injection method in Seoul, Sanbon and Chungju. The insecticidal activity of five commercial pesticides was >88%. The insecticidal activity of Monocrotophos maintained 31 days later after trunk injection when treated leaves were supplied to this pest. This result indicates that one application of trunk injection is enough to control this pest, and this method can save the control cost compared with ground application which should be applied two or three times per year to control this pest. To make the model of treatment dosage at each D.B.H class (cm), $1.0m{\ell}/DBH$, $1.5m{\ell}/DBH$ and $2.0m{\ell}/DBH$ pesticide dosage was used. At <20cm, the insecticidal activity of $1.0m{\ell}$ dosage was >95%, and $1.5-2.5m{\ell}$ dosage was needed for the effective control at 30~50cm. More than $2.5m{\ell}$ dosage was effective at >50cm. Spray method was used in laboratory to select pesticides for ground application. Three commercial pesticides (Ethofenprox 20%EC, Ethofenprox 10%WP and Cyfluthrin 1%EC) were used, and all pesticides showed >95% insecticidal activity.

  • PDF

Differentiation in Feeding Behaviour of Biotypes B and Q of Bemisia tabaci (Homoptera: Aleyrodidae) against Three Insecticides (3종의 살충제에 대한 담배가루이 Biotype B와 Q의 섭식행동 비교)

  • Seo, Mi-Ja;Yang, Jeong-Oh;Yoon, Chang-Mann;Youn, Young-Nam;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.46 no.3
    • /
    • pp.401-408
    • /
    • 2007
  • The feeding behaviors of 2 biotypes (type B and Q) of tobacco whitefly, Bemisia tobaci, were monitored using EPG technique on tomato and pepper plants treated 3 insecticides for controlling whiteflies, for examples, acetamiprid, spinosad and thiamethoxam. After treatment of three insecticides with recommended concentrations to tomato and pepper plants, EPG waveforms were recorded during 6 hours. The characteristic patterns of feeding behaviors investigated were as follows; time consumed by withdrawal of proboscis, total non-penetration time, total stylet pathway pattern time and total phloem feeding time. There was somewhat difference among 3 insecticides tested. As a result of investigation of total duration showed the stylet pathway activity due to the reaction against all tested insecticides, the Q biotype showed fewer time than those from the B biotype. The B biotype showed more frequent stylet pathway activity patterns during whole recording time and a shorter phloem ingestion time than those from the Q biotype. In result of prior up (non-penetration) time representing the reaction against the insecticide treated, the time of B biotype was more faster than that of the Q biotype, so it was considered that the B biotype was more sensitive to the tested insecticides. Therefore, our results revealed a clear difference in feeding behaviour between the B and Q biotypes of B. tabaci. Also, it was investigated that B biotype was susceptible to the 3 insecticides.

Evaluation of Low Toxic and Residual Toxicity of Pesticides Registrated on Sweet Pepper Greenhouse to Orius strigicollis (으뜸애꽃노린재 성충에 대한 착색단고추에 등록된 농약의 저독성 및 잔류독성 평가)

  • Choi, Byeong-Ryeol;Park, Hyung-Man;Kim, Jeong-Hwan;Lee, Si-Woo
    • Korean journal of applied entomology
    • /
    • v.46 no.3
    • /
    • pp.415-423
    • /
    • 2007
  • For the development of integrated pest management system by harmonizing biological and chemical control, some experiments were carried out to select low toxic pesticides and to evaluate residual toxicity to natural enemies. Leaf dipping method and body dipping method were set up for evaluating toxicity to minute pirate bug, Orius strigicollis adult. We had tested 52 kinds of pesticides (33 insecticides, 19 fungicides) commonly used to control greenhouse insects, mites, and disease pests to natural enemies at the recommended concentration. Fourteen insecticides by body dipping method, 12 insecticides by leaf dipping method and 19 fungicides were selected as low toxic pesticides to O. strigicollis adult. After insecticide spraying at recommending dose on the sweet pepper plant, we examined residual effect of insecticides by introducing natural enemies on different days. Safety interval for introduction of O. strigicollis adult was established according to residual toxicity of pesticides. Safety insecticides at one day after treatment were pyraclofos, methomyl, thiodicarb, esfenvalerate bifenthrin, alpha-cypermethrin, etofenprox, fenvalerate, imidacloprid, acetamiprid, abamectin, emamectin benzoate, spinosad, indoxacarb. However, residual toxicity of nee-nicotinoids last up to 21 days to O. strigicollis adults.

Selection of Systemic Chemicals and Attractiveness of Sunflower to Ricania spp.(Hemiptera: Ricaniidae) Adults (갈색날개매미충 성충에 대한 해바라기의 유인력과 침투이행성 약제 선발)

  • Choi, Yong-Seok;Seo, Hwa-Young;Jo, Shin-Hyuk;Whang, In-Su;Park, Deog-Kee
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.345-350
    • /
    • 2017
  • Sunflower, selected as a trap plant that can be controlled by attracting Ricania spp. adults via attraction has the highest attractiveness during the preoviposition period. Considering the ecological characteristics of Ricania spp., adults are distinguished by the preoviposition and oviposition periods and the attractiveness of sunflower to Ricania spp. adults was 91.4~95.2% higher than that of blueberry during the preoviposition period. On August 20, when Ricania spp. adults entered the oviposition season, sunflower attractiveness was low at 9.8~11.6% owing to preference for tree species. Based on the result of the selection of systemic chemicals that could be used concomitantly with sunflower, all chemicals, except etofenprox, showed a high controlling effect of over 90%, and among them, dinotefuran showed the highest insecticidal rate of 95.8%. The systemic chemicals acetamiprid, dinotefuran, thiamethoxam, and imidacloprid persisted for 13 days (survey period). Therefore, the concomitant use of sunflower and systemic chemicals can reduce the density of Ricania spp. entering farmlands and their populations in surrounding habitats, which are expected to help in stabilizing the ecosystem.

Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment (꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기)

  • Chulyoung, Kim;Donghyun, Lee;Donghee, Lee;Eunhye, Ham;Yonggyun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.519-528
    • /
    • 2022
  • The western flower thrips, Frankliniella occidentalis, infests the hot pepper cultivated in greenhouses and has been considered to be controlled by a natural enemy, Orius laevigatus. However, sporadic outbreaks of the thrips due to fast population growth occasionally need chemical insecticide treatments. This study was designed to develop an optimal integrated pest management (IPM) by using selective insecticides along with a safe re-introduction technique of the natural enemy after the chemical insecticide treatment. First, chemical insecticides were screened to select the high toxic commercial products against F. occidentalis. Five insecticides containing active components (pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, and chlorpyrifos) were selected among 17 commercial products. These five selected insecticides gave different toxic properties to the natural enemy, O. laevigatus. Especially, abamectin and spinetoram gave relatively low toxicity to the natural enemy compared to organophosphate or neonicotinoid. Furthermore, the five selected insecticides were assessed in their residual toxicities against O. laevigatus. Organophosphate and neonicotinoid insecticides showed relatively longer residual toxicity compared to abamectin and spinosads. Indeed, abamectin or spinetoram did not give any significant toxicity to O. laevigatus after 3 days post-treatment. These residual effects were further supported by the assessment of the chemical residue analysis of the insecticides using LC-MS/MS. These results suggest an IPM technology: (1) chemical treatment of abamectin or spinetoram against sporadic outbreaks of F. occidentalis infesting hot pepper and (2) re-introduction of O. laevigatus to the crops after 3 days post-treatment to depress the equilibrium density below an economic injury level.

Comparing the susceptibilities of green peach aphid populations against several insecticides

  • Min, Ji-Hyun;Yoon, Heon;Kwon, Hay-Ri;Yu, Yong-Man;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.348-358
    • /
    • 2017
  • The green peach aphid, Myzus persicae, is one of the most serious insect pest and a vector for a multitude of viral diseases to many crops, vegetables, ornamentals, and fruit trees in the world. A large number of aphids can reduce plant vigor and cause defoliation. Many insecticides have been developed and applied to control the green peach aphid. However, this aphid has displayed a remarkable ability to establish resistance to almost every insecticide. We treated 5 different insecticides registered for M. persicae on pepper leaves and investigated the effects of the insecticides by measuring the time it took to achieve 90% control of the aphids. Acetamiprid worked faster than any other insecticides while cyantraniliprole showed the slowest insecticidal effect. Pymetrozine, pyrifluquinazon, and spirotetramet provided 90% control within similar time. Iwol population's control value was higher than any other populations 24 hours after treatment. When five different unregistered insecticides for M. persicae were treated on pepper leaves, no insecticidal effect was found for gamma-cyhalothrin and novaluron and spinosad showed an insecticidal effect of up to 70% in Iwol population only. Although chlorfenapyr and dinotefuran were not registered for M. persicae, their insecticidal effects were found to be 90% or higher.

Safety Evaluation of Pesticide Residue in Five Fruits by Dietary Risk Index (소비자 위해지수를 이용한 5종 과일 중 잔류농약 안전성평가)

  • Lee, Je Bong;Hong, Su-Myeong;Kwon, Hye-Young;You, Are-Sun;Hong, Soon-Sung;Ihm, Yangbin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • In order to determine the residual characteristics of pesticides in fruits and their effects on human health, monitoring of pesticide residues were conducted in apples, peaches, pears, grapes and citrus from the major cultivation areas in 2010. Safeties of the pesticides detected from the fruits were evaluated using the amounts of pesticide residue detected and dietary risk index (DRI). Samples were taken from 4-5 major fruit cultivation areas and then pesticide residues in the test fruits were analyzed with a liquid chromatographymass spectrometry (LC-MS/MS). Mean residue levels of the pesticides in fruits were 0.001-0.144 mg/kg. The DRIs were 0.55 for apple, 0.066 for peach, 0.008 for pear, 0.025 for grape, and 0.37 for citrus, respectively. The results indicated that the amounts of pesticide residues in domestic fruits might be safe, considering the regulatory concerning level 1.0.

Susceptibility of Pine Wood Nematode Vectors to ULV Insecticides Sprayed from an Unmanned Helicopter (무인항공기를 활용한 유인항공기용 작물보호제에 대한 소나무재선충 매개충의 약제 감수성)

  • Kim, Junheon;Nam, Sangjune;Song, Jinyoung
    • Korean journal of applied entomology
    • /
    • v.59 no.2
    • /
    • pp.83-91
    • /
    • 2020
  • We assessed efficacy of spraying pesticides from an unmanned helicopter to control two insect species, Monochamus alternatus and M. saltuarius, which are vectors of pine wood nematodes. Control efficacy of thiacloprid FL (33×), acetamiprid ME (33×), and flupyradifurone SL (33×) was determined by placing caged insects in the canopy of pine trees (Pinus sp). Water-sensitive paper was used to record the spray pattern of pesticide droplets and the degree of coverage; furthermore, we investigated peripheral scattering due to spraying. The three pesticides showed > 96% control efficacy against the targeted vectors, and pesticide droplet spray patterns were similar. Peripheral scattering was observed up to 20 m in front and 10 m to the left, right, and behind the targeted area. The coverage index of all the directions at 5 and 10 m distance was 6-7 and 2, respectively.

Action properties and insecticidal effects of thiamethoxam to the melon aphid, Aphis gossypii, and diamondback moth, Plutella xylostella (목화진딧물과 배추좀나방에 대한 thiamethoxam의 살충효과 및 작용특성)

  • Jang, Cheol;Hwang, In-Cheon;Yu, Yong-Man;Choe, Kwang-Ryul
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.126-136
    • /
    • 1998
  • For the purpose of effective control strategy of the melon aphid, Aphis gossypii and the diamondback moth, Plutella xylostella, thiamethoxam and 3 other insecticides in different classes were used with bioassay test methods in laboratory and greenhouse. They were examined to evaluated and compared with contact toxicity, stomach toxicity, rapid action, systemic action, and residual effect of imidacloprid, thiamethoxam (nicotinoids), acephate (organophosphorates), and carbosulfan (carbamates). As results of contact toxicity responses of A. gassypii against 4 insecticides using a spray application method, $LC_{50}$ values of acephate, carbosulfan, imidacloprid and thiamethoxam were 41.9, 5.2, 1.1, and 0.7 ppm. respectively. In the evaluation of stomach toxicity response of P. xylostella using a leaf-dipping method, with the 2nd instar larva $LC_{50}$ values of imidacloprid, thiamethoxam and acetamiprid were 64.9, 24.6 and 15.2 ppm, with the 3rd instar larva were 125.2, 42.7 and 27.8 ppm. and with the 4th instar larva were 241.1, 44.5 and 23.9 ppm, respectively. In the case of rapid action to A. gossypii using a spray application method after inoculation, $LT_{50}$ values of imidacloprid, thiamethoxam, carbosulfan, and acephate were 26.6, 28.0, 30.3, and 41.7 min. respectively. Otherwise, in the inoculation after applying compounds, $LT_{50}$ values of thiamethoxam, imidacloprid, and carbosulfan were 95.5, 118.0, and 122.9 min. respectively. Evaluating to systemic action from the abaxial surface to the adaxial surface of red pepper leaf with spray method, $LT_{50}$ values of thiamethoxam, imidacloprid, and carbosulfan were 162.2, 168.9, and 564.1 min. respectively. For the systemic action from the lower leaves to the upper leaves on red pepper, $LT_{50}$ values of carbosulfan, thiamethoxam, imidacloprid, and acephate were 2.3, 2.9, 3.0, and 8.8 days, respectively. In red pepper plant, $LT_{50}$ values of carbosulfan, imidacloprid, thiamethoxam, and acephate on the systemic action from the roots to the upper leaf were 0.6, 1.0, 1.0, and 13.8 days, respectively. As these results, it might be that thiamethoxam was excellent on systemic effect in red pepper. For the evaluation of residual effect on red pepper with A. gossypii, thiamethoxam and imidacloprid maintained high control effects as over 80% upto 10 days after treating compounds.

  • PDF