• Title/Summary/Keyword: Accurate Predictions

Search Result 463, Processing Time 0.026 seconds

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

How Accurate are the Telephone Polls in Korea? (전화여론조사의 예측정확도 분석)

  • Cho, Sung-Kyum
    • Survey Research
    • /
    • v.10 no.1
    • /
    • pp.57-72
    • /
    • 2009
  • In Korea, telephone surveys have been used in election forecasting since 1992. In some elections, predictions were excellent, but in some elections, the predictions based on telephone surveys were not good. So, exit polls have been used along with the telephone surveys in predicting election outcomes since 2001 by the major broadcasting networks. Though telephone surveys, in general, have been less accurate than exit polls in election forecasting from 2000 to 2003, they were more accurate in the 2004 General Election than the exit polls. All predictions on the winners by the telephone surveys turned out to be accurate. But such success has not persisted. In the 2008 General Election, the telephone surveys was less accurate than the exit polls and actually its accuracy fell clown to the level of the 2000 General Election. This paper tried to find out. the factors responsible for the fluctuation of the accuracy of telephone polls.

  • PDF

Assessment of Wind Resources Predictions using Commercial Codes in Complex Terrains of Korea (WAsP과 WindSIM의 풍력자원예측성 평가)

  • Lee, Won-Seon;Hwang, Yoon-Seok;Paek, In-Su;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.173-180
    • /
    • 2009
  • Simulations using two well-known commercial codes, WAsP and WindSIM, were performed to predict the wind resources in complex terrains of Korea. The predictions from the codes were compared with the measured data. Cross predictions were performed for two closely located measurement sites. The results from WindSIM were found to be more accurate than those from WAsP. The predictions for wind velocity and direction in five different sites of complex terrain from WAsP and WindSIM were also compared. It was found that if the self prediction of the wind velocity and direction from WAsP is close to the measured wind data, the discrepancies between WAsP results and WindSIM results are also close.

  • PDF

A neural network model for predicting atlantic hurricane activity

  • Kwon, Ohseok;Golden, Bruce
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.39-42
    • /
    • 1996
  • Modeling techniques such as linear regression have been used to predict hurricane activity many months in advance of the start of the hurricane season with some success. In this paper, we construct feedforward neural networks to model Atlantic basin hurricane activity and compare the predictions of our neural network models to the predictions produced by statistical models found in the weather forecasting literature. We find that our neural network models produce reasonably accurate predictions that, for the most part, compare favorably to the predictions of statistical models.

  • PDF

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

Application of Growth Models for Pigs in Practice -Review-

  • van der Peet-Schwering, C.M.C.;den Hartog, L.A.;Vos, H.J.P.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.282-286
    • /
    • 1999
  • Growth of pigs is influenced by many factors. To assist pig producers in the evaluation of alternative feeding and management strategies growth models have been developed. In the Netherlands the Technical Model Pigfeeding (TMV) is developed. This model predicts the influence of feed intake, feed composition, genotype, sex and climate on growth, body composition, gross margin and mineral excretion of healthy growing/finishing pigs. The purpose of TMV is to support information services, feed companies, researchers and students. In addition to providing accurate predictions, a model should also be user-friendly and wishes of the user should be taken into account to stimulate application of the model in practice. In this paper, the theoretical background of TMV and a methodology to stimulate application of models in practice will be described.

An intelligent system for the design of RC slabs

  • Hossain, K.M.A.;Famiyesin, O.O.R.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.297-312
    • /
    • 2001
  • The accurate finite element (FE) simulation of reinforced concrete (RC) slabs, having different boundary conditions and subjected to uniformly distributed loading, has led to the use of the developed FE models for generating results of ultimate loads from predictions of 'computer-model' RC slabs having different material and geometric properties. Equations derived from these results constitute the primary database of an intelligent computer-aided-design (CAD) system developed for accurate and fast information retrieval on arbitrary slabs. The system is capable of generating a secondary database through systems of interpolation and can be used for design assistance purposes.