• Title/Summary/Keyword: Accuracy of Information

Search Result 10,657, Processing Time 0.035 seconds

Accuracy Assessment of Ground Information Extracting Method from LiDAR Data (LiDAR자료의 지면정보 추출기법의 정확도 평가)

  • Choi, Yun-Woong;Choi, Nei-In;Lee, Joon-Whoan;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.19-26
    • /
    • 2006
  • This study assessed the accuracies of the ground information extracting methods from the LiDAR data. Especially, it compared two kinds of method, one of them is using directly the raw LiDAR data which is point type vector data and the other is using changed data to DSM type as the normal grid type. The methods using Local Maxima and Entropy methods are applied as a former case, and for the other case, this study applies the method using edge detection with filtering and the generated reference surface by the mean filtering. Then, the accuracy assessment are performed with these results, DEM constructed manually and the error permitted limit in scale of digital map. As a results, each DEM mean errors of methods using edge detection with filtering, reference surface, Local Maxima and Entropy are 0.27m, 2.43m, 0.13m and 0.10m respectively. Hence, the method using entropy presented the highest accuracy. And an accuracy from a method directly using the raw LiDAR data has higher accuracy than the method using changed data to DSM type relatively.

  • PDF

On the Accuracy of RFID Tag Estimation Functions

  • Park, Young-Jae;Kim, Young-Beom
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • In this paper, we compare the accuracy of most representative radio frequency identification (RFID) tag estimation functions in the context of minimizing RFID tag identification delay. Before the comparisons, we first evaluate the accuracy of Schoute's estimation function, which has been widely adopted in many RFID tag identification processes, and show that its accuracy actually depends on the number of tags to be identified and frame size L used for dynamic frame slotted Aloha cycles. Through computer simulations, we show how the accuracy of estimation functions is related to the actual tag read performance in terms of identification delay.

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

A Target Detection Algorithm based on Single Shot Detector (Single Shot Detector 기반 타깃 검출 알고리즘)

  • Feng, Yuanlin;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.358-361
    • /
    • 2021
  • In order to improve the accuracy of small target detection more effectively, this paper proposes an improved single shot detector (SSD) target detection and recognition method based on cspdarknet53, which introduces lightweight ECA attention mechanism and Feature Pyramid Network (FPN). First, the original SSD backbone network is replaced with cspdarknet53 to enhance the learning ability of the network. Then, a lightweight ECA attention mechanism is added to the basic convolution block to optimize the network. Finally, FPN is used to gradually fuse the multi-scale feature maps used for detection in the SSD from the deep to the shallow layers of the network to improve the positioning accuracy and classification accuracy of the network. Experiments show that the proposed target detection algorithm has better detection accuracy, and it improves the detection accuracy especially for small targets.

Classification Accuracy Improvement for Decision Tree (의사결정트리의 분류 정확도 향상)

  • Rezene, Mehari Marta;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

Parallel Algorithm of Improved FunkSVD Based on Spark

  • Yue, Xiaochen;Liu, Qicheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1649-1665
    • /
    • 2021
  • In view of the low accuracy of the traditional FunkSVD algorithm, and in order to improve the computational efficiency of the algorithm, this paper proposes a parallel algorithm of improved FunkSVD based on Spark (SP-FD). Using RMSProp algorithm to improve the traditional FunkSVD algorithm. The improved FunkSVD algorithm can not only solve the problem of decreased accuracy caused by iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, thereby achieving the effect of improving the accuracy of the algorithm. And using the Spark big data computing framework to realize the parallelization of the improved algorithm, to use RDD for iterative calculation, and to store calculation data in the iterative process in distributed memory to speed up the iteration. The Cartesian product operation in the improved FunkSVD algorithm is divided into blocks to realize parallel calculation, thereby improving the calculation speed of the algorithm. Experiments on three standard data sets in terms of accuracy, execution time, and speedup show that the SP-FD algorithm not only improves the recommendation accuracy, shortens the calculation interval compared to the traditional FunkSVD and several other algorithms but also shows good parallel performance in a cluster environment with multiple nodes. The analysis of experimental results shows that the SP-FD algorithm improves the accuracy and parallel computing capability of the algorithm, which is better than the traditional FunkSVD algorithm.

A Study on Accuracy of Meteorological Information for Low Altitude Aerospace around the Airport on the West Coast (서해안 인접공항의 저고도 항공기상 정확도 연구)

  • Cho, Young-Jin;Yoo, Kwang Eui
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • This study is to evaluate the accuracy of the meteorological information provided for the aircraft operating at low altitude. At first, it is necessary to identify crucial elements of weather information closely related to flight safety during low altitude flights. The study conducted a survey of pilots of low altitude aircraft, divided into pre-flight and in-flight phases, and reached an opinion that wind direction, wind speed, cloud coverage and ceiling and visibility are important items. Related to these items, we compared and calculated the accuracy of TAFs and METARs from Taean Airfield, Seosan Airport and Gunsan Airport because of their high number of domestic low-altitude flights. Accuracy analysis evaluated the accuracy of two numerical variables, Mean Absolute Error(MAE) and Root Mean Square Error(RMSE), and the cloud coverage which is categorical variable was calculated and compared by accuracy. For numeric variables, one-way ANOVA, which is a parameter-test, was approached to identify differences between actual forecast values and observations based on absolute errors for each item derived from the results of MAE and RMSE accuracy analyses. To determine the satisfaction of both normality assumptions and equivalence variability assumptions, the Shapiro-Wilk test was performed to verify that they do not have a normality distribution for numerical variables, and for the non-parametric test, Kruscal-Wallis test was conducted to determine whether or not they are satisfied.

A Study of User′s Perspective and Satisfaction in National Assembly Library Electronic Library System (국회도서관 전자도서관시스템에 대한 이용자의 기대와 만족에 대한 연구)

  • Hong, Ki-Churl
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.36 no.2
    • /
    • pp.265-284
    • /
    • 2002
  • The purposes of this study are research for user's perspective and satisfaction, and analyze degree of difference in user's perspective and satisfaction through electronic library system of National Assembly Library. According to analysis of questionnaire, score of the factors that quantity of information, latest of information, quality of information, system of classification, accuracy of information are higher than average in user's perspective. Also score of the factors that speed of response, quality of information, consistency of information, consistency of retrieval, quantity of information, accuracy of information are higher than average in user's satisfaction. Result of analysis show that latest of information, quantity of information, variety of information, system of classification, accuracy of information are higher gap in user's perspective and satisfaction.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

Mobile geolocation techniques for indoor environment monitoring

  • Ouni, Ridha;Zaidi, Monji;Alsabaan, Maazen;Abdul, Wadood;Alasaad, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1337-1362
    • /
    • 2020
  • Advances in localization-based technologies and the increase in ubiquitous computing have led to a growing interest in location-based applications and services. High accuracy of the position of a wireless device is still a crucial requirement to be satisfied. Firstly, the rapid development of wireless communication technologies has affected the location accuracy of radio monitoring systems employed locally and globally. Secondly, the location is determined using standard complex computing methods and needs a relatively long execution time. In this paper, two geolocalization techniques, based on trigonometric and CORDIC computing processes, are proposed and implemented for Bluetooth-based indoor monitoring applications. Theoretical analysis and simulation results are investigated in terms of accuracy, scalability, and responsiveness. They show that the proposed techniques can locate a target wireless device accurately and are well suited for timing estimation.