• Title/Summary/Keyword: Accuracy average effect

Search Result 185, Processing Time 0.03 seconds

The Impact of Data Assimilation on WRF Simulation using Surface Data and Radar Data: Case Study (지상관측자료와 레이더 자료를 이용한 자료동화가 수치모의에 미치는 영향: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • The effect of 3DVAR (Three Dimension Variational data Assimilation) was examined by comparing observation and the simulations of CNTL (to which data assimilation was not applied) and ALL (to which data assimilation was applied using ground observation data and radar data) for the case of a heavy snowfall event (case A) of 11-12 February 2011 in the Yeongdong region. In case A, heavy snow intensively came in the Yeongdong coastal region rather than Daegwallyeong, in particular, around the Gangneung and Donghae regions with total precipitation in Bukgangneung at approximately 91 mm according to the AWS observation. It can be seen that compared to CNTL, ALL simulated larger precipitation along the Yeongdong coastline extending from Sokcho to Donghae while simulating smaller precipitation for inland areas including Daegwallyeong. On comparison of the total accumulated precipitations from simulations of CNTL and ALL, and the observed total accumulated precipitation, the positive effect of the assimilation of ground observation data and radar data could be identified in Bukgangneung and Donghae, on the other hand, the negative effect of the assimilation could be identified in the Daegwallyeong and Sokcho regions. In order to examine the average accuracy of precipitation prediction by CNTL and ALL for the entire Gangwon region including the major points mentioned earlier, the three hour accumulated precipitation from simulations of CNTL and ALL were divided into 5, 10, 15, 20, 25 and 30 mm/3hr and threat Scores were calculated by forecasting time. ALL showed relatively higher TSs than CNTL for all threshold values although there were some differences. That is, when considered generally based on the Gangwon region, the accuracy of precipitation prediction from ALL was improved somewhat compared to that from CNTL.

Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm (k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1100-1105
    • /
    • 2006
  • Severe distortions of colors in the obtained images have made it difficult for color codes to expand their applications. To reduce the effect of color distortions on reading colors, it will be more desirable to statistically process as many pixels in the individual color region as possible, than relying on some regularly sampled pixels. This process may require segmentation, which usually requires edge detection. However, edges in color codes can be disconnected due tovarious distortions such as zipper effect and reflection, to name a few, making segmentation incomplete. Edge linking is also a difficult process. In this paper, a more efficient approach to reducing the effect of color distortions on reading colors, one that excludes precise edge detection for segmentation, was obtained by employing the k-means clustering algorithm. And, in detecting color codes, the properties of both six safe colors and grays were utilized. Experiments were conducted on 144, 4M-pixel, outdoor images. The proposed method resulted in a color-code detection rate of 100% fur the test images, and an average color-reading accuracy of over 99% for the detected codes, while the highest accuracy that could be achieved with an approach employing Canny edge detection was 91.28%.

  • PDF

Calculation of the Thermodynamic Properties of R-134a and A Preliminary Study of the Refrigeration Performance (R-134a의 열역학적 물성치 계산과 냉동 성능에 관한 연구)

  • Park, Y.M.;Lee, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-296
    • /
    • 1991
  • The thermodynamic properties of R134a, the prospective R12 alternative, have been computerized using Martin-Hou equation of state and the coefficients given by Willson-Basu. Several experimental results in literatures for PVT data, saturated vapor pressure, saturated liquid density are compared with the calculated results to investigate the accuracy. The average deviation (max. deviation) is 0.13% (0.25%) for saturated liquid density, 0.25% (0.8%) for PVT data. Thermodynamic properties, enthalpy, entropy are compared with the NIST's. The maximum percent difference is 3% for saturated liquid enthalpy, 1.5% for saturated vapor enthalpy, 4% saturated liquid entropy, and 0.7% for saturated vapor entropy. Correction of W-B's coefficients and inclusion of the sixth term of M-H EOS for improvement of accuracy are recommended. R134a and R12 are compared with respect to refrigeration performance. COP's are different from each other within 3%. Refrigeration effect of R134a is superior to that of R12 but refrigeration capacity of R134a is inferior to that of R12 because the volumetric efficiency of the system using R134a is lower than that of the system using R12.

  • PDF

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Advertisement Coverage Analysis of Social Commerce Service with D2D Communications (D2D 통신을 이용한 소셜커머스 광고 커버리지 분석)

  • Kim, Jun-Seon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1547-1556
    • /
    • 2014
  • In this paper, we propose cost-effective device-to-device (D2D) advertisement scenario with properties of proximity and timeliness through the convergence of D2D communications and social commerce service. We numerically analyze advertisement dissemination effect of the proposed scenario according to the number of sectors, and demonstrate the performance of the normalized D2D coverage, the average number of D2D users, and the average D2D coverage per user via intensive simulations. We verify the accuracy of the results for our numerical analysis compared with the simulation results.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Chun G. Yoon;Kim, Seong-Joon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.25-35
    • /
    • 2002
  • In this study, the effect of DEM (Digital Elevation Model) resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using the BASINS (Better Assessment Science Integrating point and Nonpoint Source) for the Heukcheon watershed (303.3 ㎢) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might affect on the simulation of water quantity and quality. The area weighted average watershed slope became milder but the length weighted average channel slope became steeper as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation, DEM grid size of 100m is recommended for this range of watershed size.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Exploring the Feasibility of Differentiating IEEE 802.15.4 Networks to Support Health-Care Systems

  • Shin, Youn-Soon;Lee, Kang-Woo;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.132-141
    • /
    • 2011
  • IEEE 802.15.4 networks are a feasible platform candidate for connecting all health-care-related equipment dispersed across a hospital room to collect critical time-sensitive data about patient health state, such as the heart rate and blood pressure. To meet the quality of service requirements of health-care systems, this paper proposes a multi-priority queue system that differentiates between various types of frames. The effect of the proposed system on the average delay and throughput is explored herein. By employing different contention window parameters, as in IEEE 802.11e, this multi-queue system prioritizes frames on the basis of priority classes. Performance under both saturated and unsaturated traffic conditions was evaluated using a novel analytical model that comprehensively integrates two legacy models for 802.15.4 and 802.11e. To improve the accuracy, our model also accommodates the transmission retries and deferment algorithms that significantly affect the performance of IEEE 802.15.4. The multi-queue scheme is predicted to separate the average delay and throughput of two different classes by up to 48.4% and 46%, respectively, without wasting bandwidth. These outcomes imply that the multi-queue system should be employed in health-care systems for prompt allocation of synchronous channels and faster delivery of urgent information. The simulation results validate these model's predictions with a maximum deviation of 7.6%.

Effect of GGBFS on time-dependent deflection of RC beams

  • Shariq, M.;Abba, H.;Prasad, J.
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • The paper presents the experimental investigations for studying the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent deflection of reinforced concrete (RC) beams due to creep and shrinkage. The RC beams were reinforced with 2-10 mm bars at tension side and subjected to constant sustained two-point loading for the period of 150 days. The amount of cement replacement by GGBFS was varied from 0 to 60% with an increment of 20%. The total deflection was measured at different ages of up to 150 days under sustained loads. The experiments revealed that the time-dependent deflection of the reinforced concrete RC beams containing GGBFS was higher than that of plain concrete RC beams. At 150 days, the average creep and shrinkage deflection of RC beams containing 20%, 40% and 60% GGBFS was 1.25, 1.45 and 1.75 times higher than the plain concrete beams. A new model, which is an extension of authors' earlier model, is proposed to incorporate the effect of GGBFS content in predicting the long-term deflection of RC beams. Besides validating the new model with the current data with higher percentage of tension reinforcement, it was also used to predict the authors' earlier data containing lesser percentage of tension reinforcement with reasonable accuracy.